Hopf Algebras: A Basic Introduction

KyounG-TARK KM

kyoungtarkkim@sjtu.edu.cn

Shanghai Jiao Tong University

February 10, 2015
OSACA @ Pusan National University


kyoungtarkkim@sjtu.edu.cn

Based upon the following textbooks:

Moss EISENBERG SWEEDLER,
Hopf algebras,

Mathematics Lecture Note Series, W. A. Benjamin, 1969

S. DAscALEscU, C. NASTASESCU, S. RAIANU,

Hopf algebras: an introduction,

Monographs and Textbooks in Pure and Applied Mathematics 235,
Marcel Dekker, 2001

TONNY ALBERT SPRINGER,
Linear algebraic groups,

Progress in Mathematics, Birkhauser, 2nd Edition 1998



In this presentation,

K denotes a field, and

all tensor products are over K, e.g., VR W =V Qg W.

All rings and associative algebras are assumed to have identity.



Chapter 1.

Basic Definitions, Notions, and Examples



Definition of (associative) algebras over K

There are many equivalent definitions for an (associative) algebra

A over K:

> A is a ring together with a ring homomorphism K — A whose

image is in the center of A.

> Ais a K-vector space together with a K-bilinear operation
A x A — Asuch that (xy)z = x(yz), Vx,y,z €A,

in which A has multiplicative identity.



What is a 'good’ definition of algebras for us?

Among these equivalent ones we adopt the following (next page)

definition of algebras over K because it can be easily dualizable.



Definition of (associative) algebras over K, continued

A is called an algebra over K if
A is a K-vector space together with two K-linear maps

M:A®R A— Aand uv: K — A such that

Id@ M
A A® A A® A A®A K® A
ST
A2 A M A AQK —

commute, where Id : A — A is the identity map.
We call M a product and u a unit, because
xy := M(x @ y) and 14 := u(1k) play role as a usual

multiplication and identity in A.



Dualizing

By reversing all the directions of the arrows,

we obtain the notion of coalgebras over K...



Definition of coalgebras (cogebras) over K

A coalgebra C over K is a K-vector space together with two

K-linear maps A : C — C ® C and € : C — K such that

CoColC 222 coc oY kec
A®Idw IA Id®{ A ‘:

CaC—>"—¢ COK ———C
commute.

We call A a coproduct and € a counit.
The identity (Id®@ A)o A = (A ®1Id) o A from the first diagram is

referred to as the “coassociativity”.



Commutativity and Cocommutativity

» An algebra (A, M, u) is said to be commutative if

X ® X x
Ao A yey A@ A

e~

A

commutes.

> A coalgebra (C, A/ ¢) is said to be cocommutative if

CoC——2Y2Y9% o

. K

C

commutes.



Examples of coalgebras (1)

Ex. 1. 'Group-like coalgebra’
Let S be a set and V a K-space with the set S as basis.
Define A: V= V®Vande: V= Kby
A(s) :=s®@sand ¢(s) =1, Vs €S.
Then V becomes a (cocomutative) coalgebra over K.
Ex. 2. 'Devided power coalgebra’
Let D be a K-vector space with a basis {d,|m=0,1,2,---}.
Define A: D —-D®D and e : D — K by
A(dpy) = Zm: di @ dm—k and €(dp) == 00,m , ¥Ym=0,1,2,---
k=0

Then D becomes a (cocomutative) coalgebra.



Examples of coalgebras (I1)

Ex. 3. '‘Matrix coalgebra’

Ex.

4.

Let {ej}1<ij<n be the canonical basis for M := Mat,(K).
Then M is a coalgebra if A: M - M&® M and e : M — K are

A(ey) Z e @ex and  e(ey) =y

‘Incidence coalgebra

Let (P, <) be a locally finite partially ordered set, i.e,

for any x,y € P with x <y, the set {z|x < z < y} is finite.
If V is a K-vector space with {(x,y) € P x P|x < y} as basis,

A((y) = Y (x,2)@(z.y), and €((x,y)) = 0y,

x<z<y

then V' becomes a coalgebra.



Morphisms of algebras and coalgebras

> A K-linear map f : A — B of algebras is a morphism if

fef f

ARA— B®B A B
T NI
A—B K

commute.

> A K-linear map g : C — D of coalgebras is a morphism if

C D C D
Acl JAD ec\\ /D
coc—22%% . pep K

commute.



Generalized associativity
> In algebra A, we know the “generalized associativity”, e.g.,

(ab)((cd)((ef)g)) = a(b(((cd)e)(fg))) Va,b,c,d.e,f,g €A

Systemically, we can think of it as following.

In algebra (A, M, u), put M := M and define recursively

M AR - ®A—=Aby M :=M" 1o (Mxld® - @1d).
—_——— —_————

n+1 times n—1 times
Then we have “generalized associativity:
Forany n>2, ke {l,---,n—1},and p€{0,--- ,n— k},
MP =M o(ld® - - @ldeMa1ld® - ®@1d) holds.
- = - -

p times n—k—p times



Generalized coassociativity

> In coalgebra (C, A, ¢€), put A' := A and define recursively
A" CCR---®Cby A" =(ARId®---®1d) o A" 1L,
—_———— —_——

n+1 times n—1 times

Then we have “generalized coassociativity":

Forany n>2 ke{l,--- ,n—1} and p€ {0,--- ,n— k},

A"=(ld®--- @ IdA*®Id® - ®1d) o A" holds.
—— —

p times n—k—p times



Product vs Coproduct
» We can view a product map as “law of composition”, i.e.,
z:=xy=M(x®y).

The resulting quantity z = xy is more simple than x and y in

the sense that the number of quantities decreases.

» However, a coproduct map is a “law of decomposition”, i.e.,
A(X) = Z X X2;.
i, J

Usually, A produces lots of resulting quantities and xy;,

and hence we need many summation indicies for them.



The sigma notation (a.k.a. SWEEDLER notation)

“WARNING!! The notation introduced in this section plays a key

role in the sequel...”

— M. E. SWEEDLER in his book "Hopf algebras’, Section 1.2.

For coproduct A or generalized coproduct A", the sigma notation
just suppresses summation indicies of resulting quantities.

For instance, if

le, ® xp; and A3 Z X1j @ X2j @ X3k & Xap,

iyJj ijsk, £

then the sigma notation suggests to write the above equations as

:Zx1®xz and A3 ZX1®X2®X3®X4



Examples for use of the sigma notation
Let (C, A, €) be a coalgebra and x € C.
Ex. 1. The coassociativity (Id® A)o A = (A®Id)o A = A% s
Y xa@(ei®0e) =Y ()1®(x1)2®% =Y x1@xxs.
Ex. 2. The defining identity of the counit € is

Ze(xl) R X =X = le ® €(x2).

Ex. 3. A K-linear map g : C — D is a coalgebra morphism iff

> glxa)®ele) =D g(x)1®g(x)2 and ec(x) = ep(g(x))-



Warm up practice

If (C,A,¢€) be a coalgebra, can you verify the following identities?

=

Y e(x) @ Alxy) = A(x).
Exer. 2. 3" A(x) @ e(x1) = A(x).

Exer.

Exer. 3. > x1 @ €(x3) @ x0 = A(x).
Exer. 4. > x1 ® x3 ® €(x2) = A(x).
Exer. 5. Y e(x1) @x3 @x0 = Y xp @ x1.
Exer. 6. > e(x1) ® e(x3) ® x0 = x.



Computation rule using the sigma notation

(C,A,€) : a coalgebra over K
f:C®---®C— C: alkK-linear map
—_——

n+1 times

|

: C — C : the composition mapC£>C®~--®C—f>C.
—_———

n+1 times
g C®---®C — C: alkK-linear map with kK > n
—_————
k-+1 times
= The following general “computation rule" holds:
Foranyxe Cand 1< j<n+1
> g(xy Q- ®x_1® f(X_j®"'®Xj+n)®Xj+n+l ® @ Xktnt1)
=3 g ®  ®@x-1®F(X) ® X141 @ @ Xk1)-



Proof of computation rule

Proof.
Y g(xa® - @x_1QF (X @ @ X)) Xt 1@ DXkt 1)
= go(Id¥ 1 f @ Id®KI11) o AKH1(x)
= go(Id¥1@f@Id®k I T)o(Id¥ 1 @ A" @ Td¥ 7 11) o AK(x)
= go(Id¥ 1@ (fo A") @ Id®k*1) o AK(x)
= go(Id¥ 1 @ f @ 1d® 1) o AK(x)

= 2g(a® - @x-1®f() @ X1 @ - @ Xkp1)-



Chapter 2.

Duality between Algebras and Coalgebras



Review: Some linear algebra (1)

V, V*:= Homg(V,K) : a K-vector space & its dual space
(+,) : V¥ x V — K : the natural pairing, i.e., (f,v) := f(v)
If AC V then At :={f € V*|(f,v) =0, Vv e A}.
If BC V*then B :={ve V| (f,v)=0,Vfe B}

— V1t =0and V*t =0.

= If p: V — W is a K-linear map of K-vector spaces,

then its transpose ¢* : W* — V* is uniquely defined by
(p*(g),v) = (g,po(v)) forallge W*and ve V.

(Note that it is just * : W* — V* g+ goy.)



Review: Some linear algebra (II)

We define p: V* @ W* — (V @ W)* by
(p(fog),vow) =(fv)igw), YieVi geW, veV,weW,

namely, p(f ® g)(v ® w) := f(v)g(w).

— Recall that the map p is a canonical injection.

Moreover if one of V and W is finite dimensional,

then the map p becomes a K-linear isomorphism.



The dual algebra of a coalgebra

Let (C, A, ¢€) be a coalgebra over K and

C* = Homg(C,K) be its dual space.

We can define M : C*® C* — C* and v : K — C* by
M:C*® C* 25 (C® C)* 25 C* and

e

v K = K* = C*.
Proposition

1. (C*,M,u) is an algebra over K.

2. If g: C — D is a morphism of coalgebras then

g" . D* — C* is a morphism of algebras.



The dual coalgebra of a finite dimensional algebra

Let (A, M, u) be a finite dimensional algebra over K and
A* = Homg (A, K) be its dual space.

In this case, the map p: A* @ A* — (A® A)* is bijective.
Thus we can define A : A* - A*®@ A* and ¢ : A* — K by
A A My (A A) L5 A* @ A and

e A LR S K.

Proposition

1. (A*,A,€) is a coalgebra over K.

2. If f : A— B is a morphism of algebras then

f*: B* — A* is a morphism of coalgebras.



Categorical duality for finite dimensional case

(A, M, u) : a finite dimensional algebra
(C,A,€) : a finite dimensional coalgebra
If V is a finite dimensional vector space, then recall that

E:V =V E(v)(f):=f(v), Vv e V,f e V*isan isomorphism.
Proposition

1. £: A— A™ is an isomorphism of algebras;

2. £:C — C* is an isomorphism of coalgebras.

= The category F Coalg is anti-equivalent to the category F Alg.

Also, we have F Cocomm.Coalg <it> F Comm.Alg.
anti



Sub-coalgebras of a coalgebra & its duality

Let (C, A, ¢€) be a coalgebra.

If V is a subspace of C that satisfies A(V) C V @ V, then clearly
(V,Aly,€|v) becomes a coalgebra and it is easy to check that
the inclusion map V < C is a morphism of coalgebras.

This fact naturally leads to the following definition:

Definition

A subspace V C C is called a sub-coalgebra if A(V) C V& V.
Proposition

1. If V C Cis a sub-coalgebra, V' is a (two-sided) ideal of C*.

2. If JC C*is a (two-sided) ideal, J* is a sub-coalgebra of C.



Coideals of a coalgebra & its duality

Let (C, A, ¢€) be a coalgebra.

Definition

A subspace V C C is called a (two-sided) coideal if
I.A(V)CVeC+CV;

2. ¢(V)=0.

Proposition

1. If V C Cis a coideal, V+ is a subalgebra of C*.

2. If B C C* is a subalgebra, B~ is a coideal of C.



Kernel and image for a morphism of coalgebras
Let g: C — D be a morphism of coalgebras.
Proposition

1. Ker g is a coideal in C;

2. Im g is a sub-coalgebra in D.

If J C C is a coideal, there is a unique coalgebra structure on C/J

such that 7 : C — C/J is a morphism of coalgebras.

Homomorphism Theorem
If J C Ker g is a coideal, there is a unique morphism of coalgebras

g:C/J — D such that gonm = g. In particular, C/Kerg = Img.



Left and right coideals of a coalgebra & its duality

Let (C, A, ¢€) be a coalgebra.
Definition
1. A subspace V C C is called a /eft coideal if A(V) C C® V;

2. A subspace V C C is called a right coideal if A(V) C V& C.

Proposition

1. If VCC is a left (right) coideal, V' is a left (right) ideal in C*;

2. If JCC*is a left (right) ideal, J* is a left (right) coideal in C.



Caution!!

A coideal need not be either a left or a right coideal.
Furthermore, if V C C is both a left and right coideal,
then V is a sub-coalgebra and not a coideal unless V = 0.
This is because (V@ C)N(C@ V)=V V.

(Or, simply, by duality.)



Chapter 3.

Bialgebras and Hopf Algebras



Review: The tensor product of two algebras is an algebra.

(A, Ma, un), (B, Mg, ug) : algebras over K
T:A® B — B® A : the ‘twist' map, i.e., a® br— b® a

We can define Mg by

I[de T®Id Ma ® Mp

Mpzg 1 AR BRA® B ARA® B® B

A® B.

Also, we can define uagp by

up @ up

upes K — K®K

A® B.

Proposition

(A® B, Magp, uagg) is an algebra.



The tensor product of two coalgebras is a coalgebra.

(C,Ac,ec), (D,Ap,ep) : coalgebras over K
T:C®D — D® C : the ‘twist' map, ie.,, c®d— d®c

We can define Acgp by

Ac® Ap de® T®Id

Acop: C®D CoCo®D®D

CoD®C®D.

Also, we can define ecop by

6(‘@61)

ccop: C®D KoK — K.

Proposition

(C® D,Acgp,ecop) is a coalgebra.



Definition of bialgebras (bigebras)

Suppose there is a system (H, M, u, A, €) such that

(H, M, u) is an algebra and (H, A, €) is a coalgebra.
Proposition

The following are equivalent:

(A) M:H® H— H and u: K — H are coalgebra morphisms;

(B) At:H— H®H and € : H — K are algebra morphisms.

Proof. See the diagrams in next page.

Definition

(H,M,u,A,e¢) is called a bialgebra if one of (A) and (B) holds.



HoH

H///;L//z \w®m

M‘ HH®R H®H
HoH d® T®Id
vy
HoH®H®H
eER e u
H® H K&K H K
H K H® H K®K
u@u
d
K — K




Convolution algebra: Homg(C, A)

A, M, u) : an algebra over K
C,A,€) : a coalgebra over K

H := Hompg(C, A): the set of all K-linear maps from C to A

We define so called the ‘convolution product’ x : H® H — H by

Hom(A, M)
x:H®H<— Homg(C® C,A® A) H,

where the first map is a canonical injection, and

the second map Hom(A, M) is the composition map defined by

Hom(A, M) : o+ MopoA.



|dentity element in the convolution algebra Homg(C, A)

Similarly, e : C =+ K and v : K — A induce n : K — H defined by

-~ Hom(e, u)
7 : K = Homg (K, K)

H = Homg(C, A),

where Hom(e,u) : p — vopoe.

Consequently, we obtain the following result:

Proposition

1. (Homg(C, A),*,n) is an algebra over K;

2. The identity element in Homg(C, A) is n(1lg) = uoe.



Definition of Hopf algebras

(H,M,u,A,e€) : a bialgebra over K

Put HA := (H, M, u) and H® := (H, A, ¢).

Definition

(H,M,u,A,€)is a Hopf algebra if Id: H— H has inverse S: H— H
in the algebra (Homg (HS, H”), *,n). S is called the antipode.

In other words, there is S:H— H commuting the following diagram:

S®Id
H&®H H&®H




Examples of Hopf algebras (1)

Ex. 1. Group algebra

Ex.

Let G be a group and KG be a over K.
KG is a bialgebra if we endow KG with 'group-like coalgebra’.
KG is a Hopf algebra with S : KG — KG, g+ g~ !, Vg€ G.

It is cocommutative, and it is commutative iff G is abelian.

. The set K¢ of all functions from a finite group G to K

K€ is an algebra with pointwise addition and multiplication
and a coalgebra with A(¢)(g, h) := p(gh) and €(¢) == o(1¢).
K€ is a Hopf algebra with S(¢)(g) := p(g™1).

It is commutative, and it is cocomutative iff G is abelian.



Examples of Hopf algebras (I1)

Ex. 3. Tensor algebra & its families

Ex.

4.

Let T(V) = B2, V& be a tensor algebra over a K-space V.
If, for all v € V, we define A(v) =12 v+v®l, ev):=0,
and S(v) := —v, then T(V) is a cocomutative Hopf algebra.

Symmetric algebra and Exterior algebra are Hopf algebras.

Universal enveloping algebra of a Lie algebra

Let U(g) be a U.E.A. of a Lie algebra g over K.

If, for all X € g, we define A(X):=1@ X + X ®1, ¢X):=0,
and S(X) := —X, then U(g) is a cocomutative Hopf algebra.

It is commutative if and only if g is abelian.



Examples of Hopf algebras (111)

Ex. 5. SWEEDLER's 4-dimensional Hopf algebra
Assume that char K # 2.

If H is generated as an algebra by ¢ and x by the relations
c2:1, x“=0, xc=—cx,

then H is a 4-dimensional K-space with basis {1, ¢, x, cx}.

The coalgebra structure of H is defined by

Alc)=c®c, A(x):=c@x+x®1, ¢(c) =1, ¢(x) := 0.

If S(c):=c 1, S(x) := —cx, then H is a Hopf algebra.
This is the smallest example which is both non-commutative

and non-cocommutative.



Chapter 4.
Duality between

Linear Algebraic Groups and Hopf Algebras



From now on,

we suppose that K is algebraically closed.



Linear algebraic groups (=Affine algebraic groups)

Definition

An algebraic group G is an algebraic variety (over K) which is
also a group such that the maps defining the group structure
p:GxG— G,(g,h)—~ghand1:G— G,gr> g ! are

morphisms of varieties. (Here, G x G is the product of varieties.)

Definition

An algebraic group is called /inear if the underlying variety is affine.

Definition
A homomorphism G — G’ of algebraic groups is defined as

a variety morphism which is also a group homomorphism.



Review: HILBERT's Nullstellensatz

In algebraic geometry, there is a well-known (anti-)correspondence

between algebra and geometry via Nullstellensatz.

Affine variety V

Points in V

Irr. closed sub-varieties of V
Variety morphism V; — V,
(Categorical) Product V4 x V5

Combinatorial dimension

r®T T T T

Affine algebra K[V]

Maximal ideals in K[V]

Prime ideals in K[V]

Algebra morphism K[V;] — K[ V]
Coproduct K[V4] @ K[V5]

Krull Dimension



Duality between linear algebraic groups & Hopf algebras

Linear algebraic groups G <>  (comm.) Hopf algebra K[G]

Affine variety G+  Affine algebra K[G]

Map G1 — G2 <« Map K[G,] — K[G;]

(Categorical) Product G x G «»  Coproduct K[G] ® K[G]
p:GxG—=G <+ u=A:K[G] - K[G]®K[G]
1:6G—G <+ O=5:K[G] -~ K[G]

Associativity of Pt Coassociativity of A
Existence of identity &3 Counitary property
Existence of inverse 23 Antipodal property

For (K[G]7 M7 u, A7€7 S)v M(%lﬁ)(g) = @(g)w(g% u(llK) = 1K7
A(p)(g, h) = ¢(gh), e(v) = ¢(16), and S(¢)(g) = (g™ 1).



Put A = K[G] and M =

Id x
GxGxG—GxG
pxId | Iz

I

GXxXG——G

Idl \ lgH(lcy

— G x G
g (g71

v x Id
GxG—GxG

déHR G

N\ G

GxG——GXxG
Id x ¢

1k — 1\#
K G

d®
ARARA AR A
A®ld] [a
AR A A
A K®A
:T N Te@ld
ARQK Y AR A
s®1d
AR A AR A
M/ AV
At Ke—"— A




Final comment:
The study of ‘Quantum groups’ (they are some kind of Hopf
algebras) is a study for deformation of this duality between

linear algebraic groups and Hopf algebras.



Thank you for your attention!

Enjoy Hopf algebra theory!!



