Hopf Algebras: A Basic Introduction

Kyoung-Tark Kim

<kyoungtarkkim@sjtu.edu.cn>

Shanghai Jiao Tong University

February 10, 2015

OSACA @ Pusan National University

Based upon the following textbooks:

Moss Eisenberg Sweedler,

Hopf algebras,

Mathematics Lecture Note Series, W. A. Benjamin, 1969

S. DĂSCĂLESCU, C. NĂSTĂSESCU, S. RAIANU.

Hopf algebras: an introduction,

Monographs and Textbooks in Pure and Applied Mathematics 235,

Marcel Dekker, 2001

Tonny Albert Springer,

Linear algebraic groups,

Progress in Mathematics, Birkhäuser, 2nd Edition 1998

In this presentation,

 K denotes a field, and

all tensor products are over K, e.g., $V \otimes W = V \otimes_{\mathbb{K}} W$.

All rings and associative algebras are assumed to have identity.

Chapter 1.

Basic Definitions, Notions, and Examples

Definition of (associative) algebras over K

There are many equivalent definitions for an (associative) algebra A over \mathbb{K}^{\cdot}

- A is a ring together with a ring homomorphism $\mathbb{K} \to A$ whose image is in the center of A.
- \blacktriangleright A is a $\mathbb{K}\text{-vector}$ space together with a $\mathbb{K}\text{-bilinear}$ operation $A \times A \rightarrow A$ such that $(xy)z = x(yz)$, $\forall x, y, z \in A$, in which A has multiplicative identity.

. . .

What is a 'good' definition of algebras for us?

Among these equivalent ones we adopt the following (next page)

definition of algebras over K because it can be easily dualizable.

Definition of (associative) algebras over K , continued

A is called an algebra over $\mathbb K$ if

A is a $\mathbb{K}\text{-vector}$ space together with two $\mathbb{K}\text{-linear}$ maps

 $M : A \otimes A \rightarrow A$ and $u : \mathbb{K} \rightarrow A$ such that

commute, where $\text{Id}: A \rightarrow A$ is the identity map.

We call M a *product* and u a unit, because $xy := M(x \otimes y)$ and $1_A := u(1_{\mathbb{K}})$ play role as a usual multiplication and identity in A.

By reversing all the directions of the arrows,

we obtain the notion of coalgebras over $\mathbb{K}...$

Definition of coalgebras (cogebras) over $\mathbb K$

A coalgebra C over $\mathbb K$ is a $\mathbb K$ -vector space together with two $\mathbb K$ -linear maps Δ : $C \rightarrow C \otimes C$ and ϵ : $C \rightarrow \mathbb K$ such that

commute.

We call Δ a coproduct and ϵ a counit.

The identity $(\mathrm{Id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{Id}) \circ \Delta$ from the first diagram is referred to as the "coassociativity".

Commutativity and Cocommutativity

An algebra (A, M, u) is said to be *commutative* if

commutes.

A coalgebra (C, Δ, ϵ) is said to be *cocommutative* if

commutes.

Examples of coalgebras (I)

Ex. 1. 'Group-like coalgebra'

Let S be a set and V a K -space with the set S as basis. Define $\Delta: V \to V \otimes V$ and $\epsilon: V \to \mathbb{K}$ by $\Delta(s) := s \otimes s$ and $\epsilon(s) := 1, \forall s \in S$.

Then V becomes a (cocomutative) coalgebra over K .

Ex. 2. 'Devided power coalgebra'

Let D be a K-vector space with a basis $\{d_m|m=0,1,2,\cdots\}$.

Define $\Delta: D \to D \otimes D$ and $\epsilon: D \to \mathbb{K}$ by

$$
\Delta(d_m) := \sum_{k=0}^m d_k \otimes d_{m-k} \text{ and } \epsilon(d_m) := \delta_{0,m} , \quad \forall m = 0, 1, 2, \cdots.
$$

Then D becomes a (cocomutative) coalgebra.

Examples of coalgebras (II)

Ex. 3. 'Matrix coalgebra'

Let ${e_{ii}}_{1\le i,j\le n}$ be the canonical basis for $M := Mat_n(\mathbb{K})$. Then M is a coalgebra if $\Delta : M \to M \otimes M$ and $\epsilon : M \to \mathbb{K}$ are $\Delta(e_{ij}):=\sum^n e_{ik}\otimes e_{kj}$ and $\epsilon(e_{ij}):=\delta_{ij}.$

Ex. 4. 'Incidence coalgebra'

Let (P, \leq) be a locally finite partially ordered set, i.e, for any $x, y \in P$ with $x \le y$, the set $\{z | x \le z \le y\}$ is finite. If V is a K-vector space with $\{(x, y) \in P \times P | x \le y\}$ as basis,

$$
\Delta((x,y)) := \sum_{x \leq z \leq y} (x,z) \otimes (z,y), \text{ and } \epsilon((x,y)) := \delta_{x,y},
$$

then V becomes a coalgebra.

 $k=1$

Morphisms of algebras and coalgebras

A K-linear map $f : A \rightarrow B$ of algebras is a *morphism* if

commute.

A K-linear map $g: C \to D$ of coalgebras is a *morphism* if

commute.

Generalized associativity

In algebra A, we know the "generalized associativity", e.g.,

 $(dab)((cd)((ef)g)) = a(b(((cd)e)(fg))) \quad \forall a, b, c, d, e, f, g \in A.$

Systemically, we can think of it as following.

In algebra (A, M, u) , put $M^1 := M$ and define recursively $M^n: A\otimes\cdots\otimes A\to A$ by $M^n:=M^{n-1}\circ(M\otimes\mathrm{Id}\otimes\cdots\otimes\mathrm{Id}).$ $n+1$ times $\overline{n-1}$ times

Then we have "generalized associativity": For any $n \ge 2$, $k \in \{1, \dots, n-1\}$, and $p \in \{0, \dots, n-k\}$, $M^n = M^{n-k} \circ (\text{Id} \otimes \cdots \otimes \text{Id} \otimes M^k \otimes \text{Id} \otimes \cdots \otimes \text{Id})$ holds. $\overline{p \text{ times}}$ $\overline{n-k-p \text{ times}}$

Generalized coassociativity

► In coalgebra
$$
(C, \Delta, \epsilon)
$$
, put $\Delta^1 := \Delta$ and define recursively
\n $\Delta^n : C \to \underbrace{C \otimes \cdots \otimes C}_{n+1 \text{ times}} \text{ by } \Delta^n := (\Delta \otimes \underbrace{\text{Id} \otimes \cdots \otimes \text{Id}}_{n-1 \text{ times}}) \circ \Delta^{n-1}.$

Then we have "generalized coassociativity":

For any $n \ge 2$, $k \in \{1, \dots, n-1\}$, and $p \in \{0, \dots, n-k\}$, $\Delta^n = (\mathrm{Id} \otimes \cdots \otimes \mathrm{Id} \otimes \Delta^k \otimes \mathrm{Id} \otimes \cdots \otimes \mathrm{Id}) \circ \Delta^{n-k}$ holds. $\overline{p \text{ times}}$ $\overline{n-k-p}$ times

Product vs Coproduct

 \triangleright We can view a product map as "law of composition", i.e.,

$$
z := xy = M(x \otimes y).
$$

The resulting quantity $z = xy$ is more simple than x and y in the sense that the number of quantities decreases.

 \blacktriangleright However, a coproduct map is a "law of decomposition", i.e.,

$$
\Delta(x) = \sum_{i,j} x_{1i} \otimes x_{2j}.
$$

Usually, Δ produces lots of resulting quantities x_{1i} and x_{2j} , and hence we need many summation indicies for them.

The sigma notation (a.k.a. SWEEDLER notation) "WARNING!! The notation introduced in this section plays a key role in the sequel..."

 $-$ M. E. SWEEDLER in his book 'Hopf algebras', Section 1.2.

For coproduct Δ or generalized coproduct Δ^n , the sigma notation just *suppresses summation indicies* of resulting quantities. For instance, if

$$
\Delta(x) = \sum_{i,j} x_{1i} \otimes x_{2j} \text{ and } \Delta^3(x) = \sum_{i,j,k,\ell} x_{1i} \otimes x_{2j} \otimes x_{3k} \otimes x_{4\ell},
$$

then the sigma notation suggests to write the above equations as

$$
\Delta(x) = \sum x_1 \otimes x_2 \quad \text{and} \quad \Delta^3(x) = \sum x_1 \otimes x_2 \otimes x_3 \otimes x_4.
$$

Examples for use of the sigma notation

Let (C, Δ, ϵ) be a coalgebra and $x \in C$.

Ex. 1. The coassociativity $(\mathrm{Id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{Id}) \circ \Delta = \Delta^2$ is

$$
\sum x_1 \otimes (x_2)_1 \otimes (x_2)_2 = \sum (x_1)_1 \otimes (x_1)_2 \otimes x_2 = \sum x_1 \otimes x_2 \otimes x_3.
$$

Ex. 2. The defining identity of the counit ϵ is

$$
\sum \epsilon(x_1) \otimes x_2 = x = \sum x_1 \otimes \epsilon(x_2).
$$

Ex. 3. A K-linear map $g: C \rightarrow D$ is a coalgebra morphism iff

$$
\sum g(x_1) \otimes g(x_2) = \sum g(x)_1 \otimes g(x)_2 \text{ and } \epsilon_C(x) = \epsilon_D(g(x)).
$$

Warm up practice

If (C, Δ, ϵ) be a coalgebra, can you verify the following identities?

Exer. 1. $\sum \epsilon(x_2) \otimes \Delta(x_1) = \Delta(x)$. Exer. 2. $\sum \Delta(x_2) \otimes \epsilon(x_1) = \Delta(x)$. Exer. 3. $\sum x_1 \otimes \epsilon(x_3) \otimes x_2 = \Delta(x)$. Exer. 4. $\sum x_1 \otimes x_3 \otimes \epsilon(x_2) = \Delta(x)$. Exer. 5. $\sum \epsilon(x_1) \otimes x_3 \otimes x_2 = \sum x_2 \otimes x_1$. Exer. 6. $\sum \epsilon(x_1) \otimes \epsilon(x_3) \otimes x_2 = x$.

Computation rule using the sigma notation

$$
(C, \Delta, \epsilon):
$$
 a coalgebra over \mathbb{K}
 $f: \underbrace{C \otimes \cdots \otimes C}_{n+1 \text{ times}} \rightarrow C: \text{ a } \mathbb{K}\text{-linear map}$

 $\overline{f}:C\to C:$ the composition map $C\stackrel{\Delta^n}{\longrightarrow} \mathcal{C}\otimes \cdots \otimes \mathcal{C}\stackrel{f}{\longrightarrow} C.$ $n+1$ times

$$
g: \underbrace{C \otimes \cdots \otimes C}_{k+1 \text{ times}} \to C : a \mathbb{K}\text{-linear map with } k \geq n
$$

 \implies The following general "computation rule" holds: For any $x \in C$ and $1 \leq i \leq n+1$ $\sum g(x_1 \otimes \cdots \otimes x_{i-1} \otimes f(x_i \otimes \cdots \otimes x_{i+n}) \otimes x_{i+n+1} \otimes \cdots \otimes x_{k+n+1})$ $=\sum g(x_1\otimes \cdots \otimes x_{j-1}\otimes \overline{f}(x_j)\otimes x_{j+1}\otimes \cdots \otimes x_{k+1}).$

Proof of computation rule

Proof.

- $\sum g(x_1\otimes \cdots \otimes x_{i-1}\otimes f(x_i\otimes \cdots \otimes x_{i+n})\otimes x_{i+n+1}\otimes \cdots \otimes x_{k+n+1})$
- $\hspace{1cm}=\hspace{1.5mm} {\boldsymbol{\mathsf{g}}}\circ (\text{Id}^{\otimes j-1} \otimes f \otimes \text{Id}^{\otimes k-j+1}) \circ \Delta^{k+n} (x)$
- $=\, \mathcal{G}\circ (\mathrm{Id}^{\otimes j-1} \otimes f \otimes \mathrm{Id}^{\otimes k-j+1})\circ (\mathrm{Id}^{\otimes j-1} \otimes \Delta^n \otimes \mathrm{Id}^{\otimes k-j+1}) \circ \Delta^k (x)$
- $\hspace{1cm}=\hspace{1cm} {\sf g}\circ (\operatorname{Id}^{\otimes j-1} \otimes (f\circ \Delta^n) \otimes \operatorname{Id}^{\otimes k-j+1})\circ \Delta^k (x)$
- $\psi = \; g \circ (\mathrm{Id}^{\otimes j-1} \otimes \overline{f} \otimes \mathrm{Id}^{\otimes k-j+1}) \circ \Delta^k (x)$
- $= \sum_{}^{} g(x_1 \otimes \cdots \otimes x_{j-1} \otimes \overline{f(x_j)} \otimes x_{j+1} \otimes \cdots \otimes x_{k+1}).$

Chapter 2.

Duality between Algebras and Coalgebras

Review: Some linear algebra (I)

 $V, V^* := \text{Hom}_{\mathbb{K}}(V, \mathbb{K})$: a $\mathbb{K}\text{-vector space } \&$ its dual space $\langle \cdot, \cdot \rangle : V^* \times V \to \mathbb{K}$: the natural pairing, i.e., $\langle f, v \rangle := f(v)$ If $A \subseteq V$ then $A^{\perp} := \{f \in V^* \mid \langle f, v \rangle = 0, \forall v \in A\}.$ If $B \subseteq V^*$ then $B^{\perp} := \{v \in V \mid \langle f, v \rangle = 0, \forall f \in B\}.$

 $\implies V^{\perp}=0$ and $V^{*\perp}=0$.

 \implies If $\varphi: V \to W$ is a K-linear map of K-vector spaces,

then its *transpose* $\varphi^*: W^* \to V^*$ is uniquely defined by

 $\langle \varphi^*(g), v \rangle = \langle g, \varphi(v) \rangle$ for all $g \in W^*$ and $v \in V$.

(Note that it is just $\varphi^* : W^* \to V^*, g \mapsto g \circ \varphi.$)

Review: Some linear algebra (II)

We define $\rho: V^* \otimes W^* \rightarrow (V \otimes W)^*$ by

 $\langle \rho(f \otimes g), v \otimes w \rangle := \langle f, v \rangle \langle g, w \rangle, \quad \forall f \in V^*, g \in W^*, v \in V, w \in W,$ namely, $\rho(f \otimes g)(v \otimes w) := f(v)g(w)$.

 \implies Recall that the map ρ is a canonical injection.

Moreover if one of V and W is finite dimensional. then the map ρ becomes a $\mathbb K$ -linear isomorphism.

The dual algebra of a coalgebra

Let
$$
(C, \Delta, \epsilon)
$$
 be a coalgebra over K and
\n $C^* = \text{Hom}_{\mathbb{K}}(C, \mathbb{K})$ be its dual space.
\nWe can define $M : C^* \otimes C^* \to C^*$ and $u : \mathbb{K} \to C^*$ by
\n $M : C^* \otimes C^* \xrightarrow{\rho} (C \otimes C)^* \xrightarrow{\Delta^*} C^*$ and
\n $u : \mathbb{K} \xrightarrow{\simeq} \mathbb{K}^* \xrightarrow{\epsilon^*} C^*$.

Proposition

1. (C^*, M, u) is an algebra over K .

2. If $g: C \to D$ is a morphism of coalgebras then $g^*: D^* \to C^*$ is a morphism of algebras.

The dual coalgebra of a finite dimensional algebra

Let (A, M, u) be a finite dimensional algebra over K and $A^* = \text{Hom}_{\mathbb{K}}(A,\mathbb{K})$ be its dual space.

In this case, the map $\rho : A^* \otimes A^* \to (A \otimes A)^*$ is bijective.

Thus we can define $\Delta: A^* \to A^* \otimes A^*$ and $\epsilon: A^* \to \mathbb{K}$ by $\Delta: A^* \stackrel{M^*}{\longrightarrow} (A \otimes A)^* \stackrel{\rho^{-1}}{\longrightarrow} A^* \otimes A^*$ and $\epsilon: A^* \stackrel{u^*}{\longrightarrow} \mathbb{K}^* \stackrel{\simeq}{\longrightarrow} \mathbb{K}.$

Proposition

1. (A^*, Δ, ϵ) is a coalgebra over \mathbb{K} .

2. If $f : A \rightarrow B$ is a morphism of algebras then

 $f^*: B^* \to A^*$ is a morphism of coalgebras.

Categorical duality for finite dimensional case

- (A, M, u) : a finite dimensional algebra
- (C, Δ, ϵ) : a finite dimensional coalgebra
- If V is a finite dimensional vector space, then recall that

 $\mathcal{E}: V \to V^{**}, \, \mathcal{E}(v)(f) := f(v), \, \forall v \in V, f \in V^*$ is an isomorphism.

Proposition

- 1. $\mathcal{E}: A \rightarrow A^{**}$ is an isomorphism of algebras;
- 2. $\mathcal{E}: C \to C^{**}$ is an isomorphism of coalgebras.
- \implies The category **F Coalg** is anti-equivalent to the category **F Alg**. Also, we have **F Cocomm.Coalg** $\frac{2}{\pi}$ **F Comm.Alg**.

Sub-coalgebras of a coalgebra & its duality

Let (C, Δ, ϵ) be a coalgebra.

If V is a subspace of C that satisfies $\Delta(V) \subseteq V \otimes V$, then clearly

 $(V, \Delta|_V, \epsilon|_V)$ becomes a coalgebra and it is easy to check that

the inclusion map $V \hookrightarrow C$ is a morphism of coalgebras.

This fact naturally leads to the following definition:

Definition

A subspace $V \subseteq C$ is called a *sub-coalgebra* if $\Delta(V) \subseteq V \otimes V$.

Proposition

1. If $V \subseteq C$ is a sub-coalgebra, V^{\perp} is a (two-sided) ideal of $C^*.$ 2. If $J\subseteq \mathcal{C}^*$ is a (two-sided) ideal, J^\perp is a sub-coalgebra of $\mathcal{C}.$

Coideals of a coalgebra & its duality

Let (C, Δ, ϵ) be a coalgebra.

Definition

A subspace $V \subseteq C$ is called a (two-sided) coideal if

1.
$$
\Delta(V) \subseteq V \otimes C + C \otimes V;
$$

2. $\epsilon(V) = 0.$

Proposition

1. If $V \subseteq C$ is a coideal, V^{\perp} is a subalgebra of C^* .

2. If $B\subseteq \mathcal{C}^*$ is a subalgebra, B^\perp is a coideal of $C.$

Kernel and image for a morphism of coalgebras

Let $g: C \rightarrow D$ be a morphism of coalgebras.

Proposition

- 1. Ker g is a coideal in C ;
- 2. Im g is a sub-coalgebra in D .

If $J \subseteq C$ is a coideal, there is a unique coalgebra structure on C/J such that $\pi : C \to C/J$ is a morphism of coalgebras.

Homomorphism Theorem

If $J \subset \text{Ker } g$ is a coideal, there is a unique morphism of coalgebras $\overline{g}: C/J \to D$ such that $\overline{g} \circ \pi = g$. In particular, $C/Ker g \cong Im g$. Left and right coideals of a coalgebra & its duality

Let (C, Δ, ϵ) be a coalgebra.

Definition

- 1. A subspace $V \subseteq C$ is called a *left coideal* if $\Delta(V) \subseteq C \otimes V$;
- 2. A subspace $V \subseteq C$ is called a *right coideal* if $\Delta(V) \subseteq V \otimes C$.

Proposition

- 1. If $V ⊆ C$ is a left (right) coideal, V^\perp is a left (right) ideal in $C^*;$
- 2. If $J ⊆ C^*$ is a left (right) ideal, J^\perp is a left (right) coideal in $C.$

Caution!!

A coideal need not be either a left or a right coideal.

Furthermore, if $V \subset C$ is both a left and right coideal,

then V is a sub-coalgebra and not a coideal unless $V = 0$.

This is because $(V \otimes C) \cap (C \otimes V) = V \otimes V$.

(Or, simply, by duality.)

Chapter 3.

Bialgebras and Hopf Algebras

Review: The tensor product of two algebras is an algebra.

 (A, M_A, u_A) , (B, M_B, u_B) : algebras over K

 $\mathcal{T}: \mathcal{A} \otimes \mathcal{B} \to \mathcal{B} \otimes \mathcal{A}$: the 'twist' map, i.e., $a \otimes b \mapsto b \otimes a$

We can define $M_{A\otimes B}$ by $M_{A\otimes B}: A\otimes B\otimes A\otimes B \xrightarrow{\mathrm{Id}\,\otimes\, T\,\otimes\,\mathrm{Id}} A\otimes A\otimes B\otimes B \xrightarrow{M_A\,\otimes\, M_B} A\otimes B.$

Also, we can define $u_{A\otimes B}$ by

 $u_{A\otimes B}:\mathbb{K}\xrightarrow{\simeq} \mathbb{K}\otimes \mathbb{K}\xrightarrow{u_A\otimes u_B} A\otimes B.$

Proposition

 $(A \otimes B, M_{A \otimes B}, u_{A \otimes B})$ is an algebra.

The tensor product of two coalgebras is a coalgebra.

$$
(C, \Delta_C, \epsilon_C)
$$
, $(D, \Delta_D, \epsilon_D)$: coalgebras over K
 $T : C \otimes D \rightarrow D \otimes C$: the 'twist' map, i.e., $c \otimes d \mapsto d \otimes c$

We can define
$$
\Delta_{C\otimes D}
$$
 by

 $\Delta_{C\otimes D}:\mathsf{C}\otimes D \xrightarrow{\Delta_{C}\otimes \Delta_{D}} \mathsf{C}\otimes \mathsf{C}\otimes D\otimes D \xrightarrow{\mathrm{Id}\otimes \mathsf{T}\otimes \mathrm{Id}} \mathsf{C}\otimes D\otimes \mathsf{C}\otimes D.$

Also, we can define $\epsilon_{\text{C}\otimes\text{D}}$ by

 $\epsilon_{\mathcal{C}\otimes D}:\mathcal{C}\otimes D \xrightarrow{\epsilon_{\mathcal{C}}\otimes \epsilon_D} \mathbb{K}\otimes \mathbb{K} \xrightarrow{\simeq} \mathbb{K}.$

Proposition

 $(C \otimes D, \Delta_{C \otimes D}, \epsilon_{C \otimes D})$ is a coalgebra.

Definition of bialgebras (bigebras)

Suppose there is a system $(H, M, u, \Delta, \epsilon)$ such that (H, M, u) is an algebra and (H, Δ, ϵ) is a coalgebra.

Proposition

The following are equivalent:

(A) $M : H \otimes H \rightarrow H$ and $u : \mathbb{K} \rightarrow H$ are coalgebra morphisms;

 \mathbf{I}

(B) $\Delta: H \to H \otimes H$ and $\epsilon: H \to \mathbb{K}$ are algebra morphisms.

Proof. See the diagrams in next page.

Definition

 $(H, M, u, \Delta, \epsilon)$ is called a *bialgebra* if one of (A) and (B) holds.

Convolution algebra: $\text{Hom}_{\mathbb{K}}(\mathcal{C}, A)$

 (A, M, u) : an algebra over $\mathbb K$

 (C, Δ, ϵ) : a coalgebra over $\mathbb K$

 $H := \text{Hom}_{\mathbb{K}}(C, A)$: the set of all K-linear maps from C to A

We define so called the '*convolution product'* $* : H \otimes H \rightarrow H$ by $* : H \otimes H \hookrightarrow {\rm Hom}_{{\mathbb K}}({\mathcal C} \otimes {\mathcal C}, A \otimes A) \xrightarrow{{\rm Hom}(\Delta, M)} H,$

where the first map is a canonical injection, and the second map $\text{Hom}(\Delta, M)$ is the composition map defined by

 $\text{Hom}(\Delta, M) : \varphi \mapsto M \circ \varphi \circ \Delta.$

Identity element in the convolution algebra $\text{Hom}_{\mathbb{K}}(C, A)$

Similarly, $\epsilon : C \to \mathbb{K}$ and $u : \mathbb{K} \to A$ induce $\eta : \mathbb{K} \to H$ defined by

$$
\eta: \mathbb{K} \cong \mathrm{Hom}_{\mathbb{K}}(\mathbb{K}, \mathbb{K}) \xrightarrow{\mathrm{Hom}(\epsilon, u)} H = \mathrm{Hom}_{\mathbb{K}}(C, A),
$$

where $\text{Hom}(\epsilon, u) : \varphi \mapsto u \circ \varphi \circ \epsilon$.

Consequently, we obtain the following result:

Proposition

- 1. (Hom $_{K}(C, A), *$, n) is an algebra over K;
- 2. The identity element in $\text{Hom}_{\mathbb{K}}(\mathcal{C}, A)$ is $\eta(1_{\mathbb{K}}) = u \circ \epsilon$.

Definition of Hopf algebras

 $(H, M, u, \Delta, \epsilon)$: a bialgebra over K Put $H^A:=(H,M,u)$ and $H^C:=(H,\Delta,\epsilon).$

Definition

 $(H, M, u, \Delta, \epsilon)$ is a *Hopf algebra* if Id: $H \rightarrow H$ has inverse $S : H \rightarrow H$ in the algebra $(\mathrm{Hom}_{\mathbb{K}}(H^\mathsf{C},H^\mathsf{A}),*,\eta).$ S is called the *antipode*. In other words, there is $S:H\rightarrow H$ commuting the following diagram:

Examples of Hopf algebras (I)

Ex. 1. Group algebra

Let G be a group and $\mathbb{K}G$ be a group algebra over \mathbb{K} . $\mathbb{K}G$ is a bialgebra if we endow $\mathbb{K}G$ with 'group-like coalgebra'. $\mathbb{K} G$ is a Hopf algebra with S : $\mathbb{K} G\rightarrow \mathbb{K} G$, $g\mapsto g^{-1}$, $\forall g\in G.$ It is cocommutative, and it is commutative iff G is abelian.

Ex. 2. The set K^G of all functions from a finite group G to K \mathbb{K}^G is an algebra with pointwise addition and multiplication and a coalgebra with $\Delta(\varphi)(g, h) := \varphi(gh)$ and $\epsilon(\varphi) := \varphi(1_G)$. \mathbb{K}^G is a Hopf algebra with $S(\varphi)(g):=\varphi(g^{-1}).$

It is commutative, and it is cocomutative iff G is abelian.

Examples of Hopf algebras (II)

Ex. 3. Tensor algebra & its families

Let $\mathrm{T}(V)=\bigoplus_{j=0}^\infty V^{\otimes j}$ be a tensor algebra over a $\mathbb K$ -space $V.$ If, for all $v \in V$, we define $\Delta(v) := 1 \otimes v + v \otimes 1$, $\epsilon(v) := 0$, and $S(v) := -v$, then $T(V)$ is a cocomutative Hopf algebra. Symmetric algebra and Exterior algebra are Hopf algebras. Ex. 4. Universal enveloping algebra of a Lie algebra

Let $U(g)$ be a U.E.A. of a Lie algebra g over K.

If, for all $X \in \mathfrak{g}$, we define $\Delta(X) := 1 \otimes X + X \otimes 1$, $\epsilon(X) := 0$,

and $S(X) := -X$, then $U(g)$ is a cocomutative Hopf algebra.

It is commutative if and only if g is abelian.

Examples of Hopf algebras (III)

Ex. 5. SWEEDLER's 4-dimensional Hopf algebra

Assume that $char \mathbb{K} \neq 2$.

If H is generated as an algebra by c and x by the relations

$$
c^2 = 1
$$
, $x^2 = 0$, $xc = -cx$,

then H is a 4-dimensional K-space with basis $\{1, c, x, cx\}$.

The coalgebra structure of H is defined by

 $\Delta(c) := c \otimes c, \Delta(x) := c \otimes x + x \otimes 1, \epsilon(c) := 1, \epsilon(x) := 0.$

If $S(c) := c^{-1}$, $S(x) := -cx$, then H is a Hopf algebra.

This is the smallest example which is both non-commutative

and non-cocommutative.

Chapter 4.

Duality between

Linear Algebraic Groups and Hopf Algebras

From now on,

we suppose that K is algebraically closed.

Linear algebraic groups $($ = Affine algebraic groups)

Definition

An *algebraic group* G is an algebraic variety (over K) which is also a group such that the maps defining the group structure $\mu: \mathsf{G} \times \mathsf{G} \to \mathsf{G}, (\mathsf{g},\mathsf{h}) \mapsto \mathsf{g} \mathsf{h}$ and $\iota: \mathsf{G} \to \mathsf{G}, \mathsf{g} \mapsto \mathsf{g}^{-1}$ are morphisms of varieties. (Here, $G \times G$ is the product of varieties.)

Definition

An algebraic group is called *linear* if the underlying variety is affine.

Definition

A *homomorphism* $G \rightarrow G'$ of algebraic groups is defined as a variety morphism which is also a group homomorphism.

Review: HILBERT's Nullstellensatz

In algebraic geometry, there is a well-known (anti-)correspondence between algebra and geometry via Nullstellensatz.

Duality between linear algebraic groups & Hopf algebras

For $(\mathbb{K}[G], M, u, \Delta, \epsilon, S), M(\varphi, \psi)(g) = \varphi(g)\psi(g), u(1_{\mathbb{K}}) = 1_{\mathbb{K}},$ $\Delta(\varphi)(g,h)=\varphi(gh),\,\epsilon(\varphi)=\varphi(1_G),$ and $S(\varphi)(g)=\varphi(g^{-1}).$

Put $A := \mathbb{K}[G]$ and $M^0 = \text{diag}: G \to G, g \mapsto (g, g)$.

Final comment:

The study of 'Quantum groups' (they are some kind of Hopf

algebras) is a study for deformation of this duality between

linear algebraic groups and Hopf algebras.

Thank you for your attention!

Enjoy Hopf algebra theory!!