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In this presentation,

K denotes a field, and

all tensor products are over K, e.g., V ⊗W = V ⊗K W .

All rings and associative algebras are assumed to have identity.



Chapter 1.

Basic Definitions, Notions, and Examples



Definition of (associative) algebras over K

There are many equivalent definitions for an (associative) algebra

A over K:

I A is a ring together with a ring homomorphism K→ A whose

image is in the center of A.

I A is a K-vector space together with a K-bilinear operation

A× A→ A such that (xy)z = x(yz), ∀x , y , z ∈ A,

in which A has multiplicative identity.

...



What is a ’good’ definition of algebras for us?

Among these equivalent ones we adopt the following (next page)

definition of algebras over K because it can be easily dualizable.



Definition of (associative) algebras over K, continued

A is called an algebra over K if

A is a K-vector space together with two K-linear maps

M : A⊗ A→ A and u : K→ A such that

A⊗ A⊗ A A⊗ A A⊗ A K⊗ A

A⊗ A A A⊗K A

Id⊗M

M ⊗ Id

M

M

u ⊗ Id

Id⊗ u

'

'M

commute, where Id : A→ A is the identity map.

We call M a product and u a unit, because

xy := M(x ⊗ y) and 1A := u(1K) play role as a usual

multiplication and identity in A.



Dualizing

By reversing all the directions of the arrows,

we obtain the notion of coalgebras over K...



Definition of coalgebras (cogebras) over K

A coalgebra C over K is a K-vector space together with two

K-linear maps ∆ : C → C ⊗ C and ε : C → K such that

C ⊗ C ⊗ C C ⊗ C C ⊗ C K⊗ C

C ⊗ C C C ⊗K C

Id⊗∆

∆⊗ Id

∆

∆

ε⊗ Id

Id⊗ ε

'

'∆

commute.

We call ∆ a coproduct and ε a counit.

The identity (Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆ from the first diagram is

referred to as the “coassociativity”.



Commutativity and Cocommutativity

I An algebra (A,M, u) is said to be commutative if

A⊗ A A⊗ A

A

x ⊗ y 7→ y ⊗ x

M M

commutes.

I A coalgebra (C ,∆, ε) is said to be cocommutative if

C ⊗ C C ⊗ C

C

x ⊗ y 7→ y ⊗ x

∆ ∆

commutes.



Examples of coalgebras (I)

Ex. 1. ‘Group-like coalgebra’

Let S be a set and V a K-space with the set S as basis.

Define ∆ : V → V ⊗ V and ε : V → K by

∆(s) := s ⊗ s and ε(s) := 1, ∀s ∈ S .

Then V becomes a (cocomutative) coalgebra over K.

Ex. 2. ‘Devided power coalgebra’

Let D be a K-vector space with a basis {dm|m = 0, 1, 2, · · · }.

Define ∆ : D → D ⊗ D and ε : D → K by

∆(dm) :=
m∑

k=0

dk ⊗ dm−k and ε(dm) := δ0,m , ∀m = 0, 1, 2, · · · .

Then D becomes a (cocomutative) coalgebra.



Examples of coalgebras (II)

Ex. 3. ‘Matrix coalgebra’

Let {eij}1≤i ,j≤n be the canonical basis for M := Matn(K).

Then M is a coalgebra if ∆ : M → M ⊗M and ε : M → K are

∆(eij) :=
n∑

k=1

eik ⊗ ekj and ε(eij) := δij .

Ex. 4. ‘Incidence coalgebra’

Let (P,≤) be a locally finite partially ordered set, i.e,

for any x , y ∈ P with x ≤ y , the set {z |x ≤ z ≤ y} is finite.

If V is a K-vector space with {(x , y) ∈ P ×P|x ≤ y} as basis,

∆((x , y)) :=
∑

x≤z≤y
(x , z)⊗ (z , y), and ε((x , y)) := δx ,y ,

then V becomes a coalgebra.



Morphisms of algebras and coalgebras

I A K-linear map f : A→ B of algebras is a morphism if

A⊗ A B ⊗ B A B

A B K

f ⊗ f

f
MA MB

f

uA uB

commute.

I A K-linear map g : C → D of coalgebras is a morphism if

C D C D

C ⊗ C D ⊗ D K

g

g ⊗ g
∆C ∆D

g

εC εD

commute.



Generalized associativity

I In algebra A, we know the “generalized associativity”, e.g.,

(ab)((cd)((ef )g)) = a(b(((cd)e)(fg))) ∀a, b, c , d , e, f , g ∈ A.

Systemically, we can think of it as following.

In algebra (A,M, u), put M1 := M and define recursively

Mn : A⊗ · · · ⊗ A︸ ︷︷ ︸
n+1 times

→ A by Mn := Mn−1 ◦ (M⊗ Id⊗ · · · ⊗ Id︸ ︷︷ ︸
n−1 times

).

Then we have “generalized associativity”:

For any n ≥ 2, k ∈ {1, · · · , n − 1}, and p ∈ {0, · · · , n − k},

Mn = Mn−k ◦ ( Id⊗ · · · ⊗ Id︸ ︷︷ ︸
p times

⊗Mk⊗ Id⊗ · · · ⊗ Id︸ ︷︷ ︸
n−k−p times

) holds.



Generalized coassociativity

I In coalgebra (C ,∆, ε), put ∆1 := ∆ and define recursively

∆n : C → C ⊗ · · · ⊗ C︸ ︷︷ ︸
n+1 times

by ∆n := (∆⊗ Id⊗ · · · ⊗ Id︸ ︷︷ ︸
n−1 times

) ◦∆n−1.

Then we have “generalized coassociativity”:

For any n ≥ 2, k ∈ {1, · · · , n − 1}, and p ∈ {0, · · · , n − k},

∆n = ( Id⊗ · · · ⊗ Id︸ ︷︷ ︸
p times

⊗∆k⊗ Id⊗ · · · ⊗ Id︸ ︷︷ ︸
n−k−p times

) ◦∆n−k holds.



Product vs Coproduct

I We can view a product map as “law of composition”, i.e.,

z := xy = M(x ⊗ y).

The resulting quantity z = xy is more simple than x and y in

the sense that the number of quantities decreases.

I However, a coproduct map is a “law of decomposition”, i.e.,

∆(x) =
∑
i , j

x1i ⊗ x2j .

Usually, ∆ produces lots of resulting quantities x1i and x2j ,

and hence we need many summation indicies for them.



The sigma notation (a.k.a. Sweedler notation)

“WARNING!! The notation introduced in this section plays a key

role in the sequel...”

– M. E. Sweedler in his book ’Hopf algebras’, Section 1.2.

For coproduct ∆ or generalized coproduct ∆n, the sigma notation

just suppresses summation indicies of resulting quantities.

For instance, if

∆(x) =
∑
i , j

x1i ⊗ x2j and ∆3(x) =
∑

i , j , k, `

x1i ⊗ x2j ⊗ x3k ⊗ x4`,

then the sigma notation suggests to write the above equations as

∆(x) =
∑

x1 ⊗ x2 and ∆3(x) =
∑

x1 ⊗ x2 ⊗ x3 ⊗ x4.



Examples for use of the sigma notation

Let (C ,∆, ε) be a coalgebra and x ∈ C .

Ex. 1. The coassociativity (Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆ = ∆2 is

∑
x1⊗(x2)1⊗(x2)2 =

∑
(x1)1⊗(x1)2⊗x2 =

∑
x1⊗x2⊗x3.

Ex. 2. The defining identity of the counit ε is

∑
ε(x1)⊗ x2 = x =

∑
x1 ⊗ ε(x2).

Ex. 3. A K-linear map g : C → D is a coalgebra morphism iff

∑
g(x1)⊗g(x2) =

∑
g(x)1⊗g(x)2 and εC (x) = εD(g(x)).



Warm up practice

If (C ,∆, ε) be a coalgebra, can you verify the following identities?

Exer. 1.
∑
ε(x2)⊗∆(x1) = ∆(x).

Exer. 2.
∑

∆(x2)⊗ ε(x1) = ∆(x).

Exer. 3.
∑

x1 ⊗ ε(x3)⊗ x2 = ∆(x).

Exer. 4.
∑

x1 ⊗ x3 ⊗ ε(x2) = ∆(x).

Exer. 5.
∑
ε(x1)⊗ x3 ⊗ x2 =

∑
x2 ⊗ x1.

Exer. 6.
∑
ε(x1)⊗ ε(x3)⊗ x2 = x .



Computation rule using the sigma notation

(C ,∆, ε) : a coalgebra over K

f : C ⊗ · · · ⊗ C︸ ︷︷ ︸
n+1 times

→ C : a K-linear map

f : C → C : the composition map C
∆n

−→ C ⊗ · · · ⊗ C︸ ︷︷ ︸
n+1 times

f−→ C .

g : C ⊗ · · · ⊗ C︸ ︷︷ ︸
k+1 times

→ C : a K-linear map with k ≥ n

=⇒ The following general “computation rule” holds:

For any x ∈ C and 1 ≤ j ≤ n + 1∑
g(x1 ⊗ · · · ⊗ xj−1 ⊗ f (xj ⊗ · · · ⊗ xj+n)⊗ xj+n+1 ⊗ · · · ⊗ xk+n+1)

=
∑

g(x1 ⊗ · · · ⊗ xj−1 ⊗ f (xj)⊗ xj+1 ⊗ · · · ⊗ xk+1).



Proof of computation rule

Proof.∑
g(x1⊗· · ·⊗xj−1⊗f (xj ⊗ · · · ⊗ xj+n)⊗xj+n+1⊗· · ·⊗xk+n+1)

= g ◦ (Id⊗j−1 ⊗ f ⊗ Id⊗k−j+1) ◦∆k+n(x)

= g◦(Id⊗j−1⊗f⊗Id⊗k−j+1)◦(Id⊗j−1 ⊗∆n ⊗ Id⊗k−j+1) ◦∆k(x)

= g ◦ (Id⊗j−1 ⊗ (f ◦∆n)⊗ Id⊗k−j+1) ◦∆k(x)

= g ◦ (Id⊗j−1 ⊗ f ⊗ Id⊗k−j+1) ◦∆k(x)

=
∑

g(x1 ⊗ · · · ⊗ xj−1 ⊗ f (xj)⊗ xj+1 ⊗ · · · ⊗ xk+1).



Chapter 2.

Duality between Algebras and Coalgebras



Review: Some linear algebra (I)

V , V ∗ := HomK(V ,K) : a K-vector space & its dual space

〈·, ·〉 : V ∗ × V → K : the natural pairing, i.e., 〈f , v〉 := f (v)

If A ⊆ V then A⊥ := {f ∈ V ∗ | 〈f , v〉 = 0, ∀v ∈ A}.

If B ⊆ V ∗ then B⊥ := {v ∈ V | 〈f , v〉 = 0, ∀f ∈ B}.

=⇒ V⊥ = 0 and V ∗⊥ = 0.

=⇒ If ϕ : V →W is a K-linear map of K-vector spaces,

then its transpose ϕ∗ : W ∗ → V ∗ is uniquely defined by

〈ϕ∗(g), v〉 = 〈g , ϕ(v)〉 for all g ∈W ∗ and v ∈ V .

(Note that it is just ϕ∗ : W ∗ → V ∗, g 7→ g ◦ ϕ.)



Review: Some linear algebra (II)

We define ρ : V ∗ ⊗W ∗ → (V ⊗W )∗ by

〈ρ(f ⊗ g), v ⊗ w〉 := 〈f , v〉〈g ,w〉, ∀f ∈ V ∗, g ∈W ∗, v ∈ V ,w ∈W ,

namely, ρ(f ⊗ g)(v ⊗ w) := f (v)g(w).

=⇒ Recall that the map ρ is a canonical injection.

Moreover if one of V and W is finite dimensional,

then the map ρ becomes a K-linear isomorphism.



The dual algebra of a coalgebra

Let (C ,∆, ε) be a coalgebra over K and

C ∗ = HomK(C ,K) be its dual space.

We can define M : C ∗ ⊗ C ∗ → C ∗ and u : K→ C ∗ by

M : C ∗ ⊗ C ∗
ρ−→ (C ⊗ C )∗

∆∗
−→ C ∗ and

u : K '−→ K∗ ε∗−→ C ∗.

Proposition

1. (C ∗,M, u) is an algebra over K.

2. If g : C → D is a morphism of coalgebras then

g∗ : D∗ → C ∗ is a morphism of algebras.



The dual coalgebra of a finite dimensional algebra

Let (A,M, u) be a finite dimensional algebra over K and

A∗ = HomK(A,K) be its dual space.

In this case, the map ρ : A∗ ⊗ A∗ → (A⊗ A)∗ is bijective.

Thus we can define ∆ : A∗ → A∗ ⊗ A∗ and ε : A∗ → K by

∆ : A∗
M∗
−→ (A⊗ A)∗

ρ−1

−→ A∗ ⊗ A∗ and

ε : A∗
u∗−→ K∗ '−→ K.

Proposition

1. (A∗,∆, ε) is a coalgebra over K.

2. If f : A→ B is a morphism of algebras then

f ∗ : B∗ → A∗ is a morphism of coalgebras.



Categorical duality for finite dimensional case

(A,M, u) : a finite dimensional algebra

(C ,∆, ε) : a finite dimensional coalgebra

If V is a finite dimensional vector space, then recall that

E : V → V ∗∗, E(v)(f ) := f (v), ∀v ∈ V , f ∈ V ∗ is an isomorphism.

Proposition

1. E : A→ A∗∗ is an isomorphism of algebras;

2. E : C → C ∗∗ is an isomorphism of coalgebras.

=⇒ The category FCoalg is anti-equivalent to the category FAlg.

Also, we have FCocomm.Coalg FComm.Alg.
'

anti



Sub-coalgebras of a coalgebra & its duality

Let (C ,∆, ε) be a coalgebra.

If V is a subspace of C that satisfies ∆(V ) ⊆ V ⊗ V , then clearly

(V ,∆|V , ε|V ) becomes a coalgebra and it is easy to check that

the inclusion map V ↪→ C is a morphism of coalgebras.

This fact naturally leads to the following definition:

Definition

A subspace V ⊆ C is called a sub-coalgebra if ∆(V ) ⊆ V ⊗ V .

Proposition

1. If V ⊆ C is a sub-coalgebra, V⊥ is a (two-sided) ideal of C ∗.

2. If J ⊆ C ∗ is a (two-sided) ideal, J⊥ is a sub-coalgebra of C .



Coideals of a coalgebra & its duality

Let (C ,∆, ε) be a coalgebra.

Definition

A subspace V ⊆ C is called a (two-sided) coideal if

1. ∆(V ) ⊆ V ⊗ C + C ⊗ V ;

2. ε(V ) = 0.

Proposition

1. If V ⊆ C is a coideal, V⊥ is a subalgebra of C ∗.

2. If B ⊆ C ∗ is a subalgebra, B⊥ is a coideal of C .



Kernel and image for a morphism of coalgebras

Let g : C → D be a morphism of coalgebras.

Proposition

1. Ker g is a coideal in C ;

2. Im g is a sub-coalgebra in D.

If J ⊆ C is a coideal, there is a unique coalgebra structure on C/J

such that π : C → C/J is a morphism of coalgebras.

Homomorphism Theorem

If J ⊆ Ker g is a coideal, there is a unique morphism of coalgebras

g : C/J → D such that g ◦ π = g . In particular, C/Ker g ∼= Im g .



Left and right coideals of a coalgebra & its duality

Let (C ,∆, ε) be a coalgebra.

Definition

1. A subspace V ⊆ C is called a left coideal if ∆(V ) ⊆ C ⊗ V ;

2. A subspace V ⊆ C is called a right coideal if ∆(V ) ⊆ V ⊗ C .

Proposition

1. If V⊆C is a left (right) coideal,V⊥ is a left (right) ideal in C ∗;

2. If J⊆C ∗ is a left (right) ideal, J⊥ is a left (right) coideal in C .



Caution!!

A coideal need not be either a left or a right coideal.

Furthermore, if V ⊆ C is both a left and right coideal,

then V is a sub-coalgebra and not a coideal unless V = 0.

This is because (V ⊗ C ) ∩ (C ⊗ V ) = V ⊗ V .

(Or, simply, by duality.)



Chapter 3.

Bialgebras and Hopf Algebras



Review: The tensor product of two algebras is an algebra.

(A,MA, uA), (B,MB , uB) : algebras over K

T : A⊗ B → B ⊗ A : the ‘twist’ map, i.e., a⊗ b 7→ b ⊗ a

We can define MA⊗B by

MA⊗B : A⊗ B ⊗ A⊗ B A⊗ A⊗ B ⊗ B A⊗ B.
Id⊗ T ⊗ Id MA ⊗MB

Also, we can define uA⊗B by

uA⊗B : K K⊗K A⊗ B.
' uA ⊗ uB

Proposition

(A⊗ B,MA⊗B , uA⊗B) is an algebra.



The tensor product of two coalgebras is a coalgebra.

(C ,∆C , εC ), (D,∆D , εD) : coalgebras over K

T : C ⊗ D → D ⊗ C : the ‘twist’ map, i.e., c ⊗ d 7→ d ⊗ c

We can define ∆C⊗D by

∆C⊗D : C ⊗ D C ⊗ C ⊗ D ⊗ D C ⊗ D ⊗ C ⊗ D.
∆C ⊗∆D Id⊗ T ⊗ Id

Also, we can define εC⊗D by

εC⊗D : C ⊗ D K⊗K K.
εC ⊗ εD '

Proposition

(C ⊗ D,∆C⊗D , εC⊗D) is a coalgebra.



Definition of bialgebras (bigebras)

Suppose there is a system (H,M, u,∆, ε) such that

(H,M, u) is an algebra and (H,∆, ε) is a coalgebra.

Proposition

The following are equivalent:

(A) M : H ⊗ H → H and u : K→ H are coalgebra morphisms;

(B) ∆ : H → H ⊗ H and ε : H → K are algebra morphisms.

Proof. See the diagrams in next page.

Definition

(H,M, u,∆, ε) is called a bialgebra if one of (A) and (B) holds.



H

H ⊗ H

H ⊗ H

H ⊗ H ⊗ H ⊗ H

H ⊗ H ⊗ H ⊗ H

∆

∆⊗∆

M

M ⊗M

Id⊗ T ⊗ Id

H ⊗ H K⊗K

H K

ε⊗ ε

ε

M MK'

H

H ⊗ H

K

K⊗K

u

u ⊗ u

∆ ∆K'

K K

H

Id

u ε



Convolution algebra: HomK(C ,A)

(A,M, u) : an algebra over K

(C ,∆, ε) : a coalgebra over K

H := HomK(C ,A): the set of all K-linear maps from C to A

We define so called the ‘convolution product’ ∗ : H ⊗ H → H by

∗ : H ⊗ H ↪→ HomK(C ⊗ C ,A⊗ A) H,
Hom(∆,M)

where the first map is a canonical injection, and

the second map Hom(∆,M) is the composition map defined by

Hom(∆,M) : ϕ 7→ M ◦ ϕ ◦∆.



Identity element in the convolution algebra HomK(C ,A)

Similarly, ε : C → K and u : K→ A induce η : K→ H defined by

η : K ∼= HomK(K,K) H = HomK(C ,A),
Hom(ε, u)

where Hom(ε, u) : ϕ 7→ u ◦ ϕ ◦ ε.

Consequently, we obtain the following result:

Proposition

1. (HomK(C ,A), ∗, η) is an algebra over K;

2. The identity element in HomK(C ,A) is η(1K) = u ◦ ε.



Definition of Hopf algebras

(H,M, u,∆, ε) : a bialgebra over K

Put HA := (H,M, u) and HC := (H,∆, ε).

Definition

(H,M, u,∆, ε) is a Hopf algebra if Id :H→H has inverse S :H→H

in the algebra (HomK(HC ,HA), ∗, η). S is called the antipode.

In other words, there is S :H→H commuting the following diagram:

H ⊗ H H ⊗ H

H K H

H ⊗ H H ⊗ H

∆

∆

ε u

M

M

S ⊗ Id

Id⊗ S



Examples of Hopf algebras (I)

Ex. 1. Group algebra

Let G be a group and KG be a group algebra over K.

KG is a bialgebra if we endow KG with ’group-like coalgebra’.

KG is a Hopf algebra with S : KG → KG , g 7→ g−1, ∀g ∈ G .

It is cocommutative, and it is commutative iff G is abelian.

Ex. 2. The set KG of all functions from a finite group G to K

KG is an algebra with pointwise addition and multiplication

and a coalgebra with ∆(ϕ)(g , h) := ϕ(gh) and ε(ϕ) := ϕ(1G ).

KG is a Hopf algebra with S(ϕ)(g) := ϕ(g−1).

It is commutative, and it is cocomutative iff G is abelian.



Examples of Hopf algebras (II)

Ex. 3. Tensor algebra & its families

Let T(V ) =
⊕∞

j=0 V
⊗j be a tensor algebra over a K-space V .

If, for all v ∈ V , we define ∆(v) := 1⊗ v + v ⊗ 1, ε(v) := 0,

and S(v) := −v , then T(V ) is a cocomutative Hopf algebra.

Symmetric algebra and Exterior algebra are Hopf algebras.

Ex. 4. Universal enveloping algebra of a Lie algebra

Let U(g) be a U.E.A. of a Lie algebra g over K.

If, for all X ∈ g, we define ∆(X ) :=1⊗ X + X ⊗ 1, ε(X ) := 0,

and S(X ) := −X , then U(g) is a cocomutative Hopf algebra.

It is commutative if and only if g is abelian.



Examples of Hopf algebras (III)

Ex. 5. Sweedler’s 4-dimensional Hopf algebra

Assume that charK 6= 2.

If H is generated as an algebra by c and x by the relations

c2 = 1, x2 = 0, xc = −cx ,

then H is a 4-dimensional K-space with basis {1, c , x , cx}.

The coalgebra structure of H is defined by

∆(c) := c ⊗ c , ∆(x) := c ⊗ x + x ⊗ 1, ε(c) := 1, ε(x) := 0.

If S(c) := c−1, S(x) := −cx , then H is a Hopf algebra.

This is the smallest example which is both non-commutative

and non-cocommutative.



Chapter 4.

Duality between

Linear Algebraic Groups and Hopf Algebras



From now on,

we suppose that K is algebraically closed.



Linear algebraic groups (=Affine algebraic groups)

Definition

An algebraic group G is an algebraic variety (over K) which is

also a group such that the maps defining the group structure

µ : G × G → G , (g , h) 7→ gh and ι : G → G , g 7→ g−1 are

morphisms of varieties. (Here, G × G is the product of varieties.)

Definition

An algebraic group is called linear if the underlying variety is affine.

Definition

A homomorphism G → G ′ of algebraic groups is defined as

a variety morphism which is also a group homomorphism.



Review: Hilbert’s Nullstellensatz

In algebraic geometry, there is a well-known (anti-)correspondence

between algebra and geometry via Nullstellensatz.

Geometry ↔ Algebra

Affine variety V ↔ Affine algebra K[V ]

Points in V ↔ Maximal ideals in K[V ]

Irr. closed sub-varieties of V ↔ Prime ideals in K[V ]

Variety morphism V1 → V2 ↔ Algebra morphism K[V2]→K[V1]

(Categorical) Product V1×V2 ↔ Coproduct K[V1]⊗K[V2]

Combinatorial dimension ↔ Krull Dimension
...

...
...



Duality between linear algebraic groups & Hopf algebras

Linear algebraic groups G ↔ (comm.) Hopf algebra K[G ]

Affine variety G ↔ Affine algebra K[G ]

Map G1 → G2 ↔ Map K[G2]→ K[G1]

(Categorical) Product G × G ↔ Coproduct K[G ]⊗K[G ]

µ : G × G → G ↔ µ0 = ∆ : K[G ]→ K[G ]⊗K[G ]

ι : G → G ↔ ι0 = S : K[G ]→ K[G ]

Associativity of µ
Ax .1←→ Coassociativity of ∆

Existence of identity
Ax .2←→ Counitary property

Existence of inverse
Ax .3←→ Antipodal property

For (K[G ],M, u,∆, ε,S), M(ϕ,ψ)(g) = ϕ(g)ψ(g), u(1K) = 1K,

∆(ϕ)(g , h) = ϕ(gh), ε(ϕ) = ϕ(1G ), and S(ϕ)(g) = ϕ(g−1).



Put A := K[G ] and M0 = diag : G → G , g 7→ (g , g).

G × G × G G × G

G × G G

Id× µ

µ× Id µ
µ

A⊗ A⊗ A A⊗ A

A⊗ A A

Id⊗∆

∆⊗ Id ∆
∆

Ax .1←→

G × G G × G

G K G

G × G G × G

diag

diag

g 7→ 1K 1K 7→ 1G
µ

µ

ι× Id

Id× ι

A⊗ A A⊗ A

A K A

A⊗ A A⊗ A

M

M

u ε
∆

∆

S ⊗ Id

Id⊗ S

Ax .3←→

G G

G G × G
µ

Id

Id g 7→ (1G , g)

g 7→ (g , 1G )

A K⊗ A

A⊗K A⊗ A
∆

'

' ε⊗ Id

Id⊗ ε

Ax .2←→



Final comment:

The study of ‘Quantum groups’ (they are some kind of Hopf

algebras) is a study for deformation of this duality between

linear algebraic groups and Hopf algebras.



Thank you for your attention!

Enjoy Hopf algebra theory!!


