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Definition

Let C" be the complex n-space and dxdy be the ordinary volume measure on C”. Let
du be a Gaussian measure defined by

du(z) = %e"zlz dxdy.

The Fock space, denoted by F? := F?(C"), is then the space L?(C") N H(C"). Being
considered as a closed subspace of L2(C"), the space F2(C") is a Hilbert space with
inner product (-, -) and norm || - || given by

(f.9):= | 1(2)9(2) du(2)

cn

and

1917 = [ 1) duz)

for f,g € F>.
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Definition

Here, we are using the standard multi-index notation. Namely, given an n-tuple

a = (a4, ...,an) of nonnegative integers, |a| :== s + -+ + apand 9% := )" --- 9"
where 9; denotes the partial differentiation with respect to the j-th component.

We define

za

e (Z2) = ——
()= [z

Then {e. : a € N} is an orthonormal basis for F2.

For f € F2, let

f(z)= > cata(2)

n
a€eNg

be the orthonormal decomposition of f.
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Definition of the radial derivative

We define the radial derivative Rf by

n
0 n
Rf:=>" (22,-87jf+ 1) for f € H(C").

J=1

Then R is a self-adjoint operator.
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Definition of the spectrum

o(R) = {A €C|#(\—R)"": bounded }
=0p(R)Uoe(R)Uor(R)

where
(Point Spectrum)

op(R) :={A € a(R) CC:ker(R — Al) # {0}}

(Continuous Spectrum)

oo(R) = {A € 5(R) C C: ker(R — Al) = {0} and Range(R — \I) = F*}

(Residual Spectrum)

o/ (R) = {)\ € o(R) C C: ker(R — Al) = {0} and Range(R — /) # F2} .
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The properties of o(R)

Main Theorem

o(R) = 0p(R) = {2k + n: k € No} .

() (Step1) R : Dom(R) — F?is injective.
Suppose that Rfy = Rf. Vfi, 2 € Dom(R).
Since {e, : @ € NI} is an orthonormal basis for F2,

> (@lal+n){fi, ea)ea =RA=RE=>_ (2|a| + n)(k, e.)ea

aENg aENg
= > (2la] + n)(fi,e)ea = D _ (2o + n){h, eq)en
aENg aENg
= > (2la| + n)(fi — f,ea)ea =0
aeNg
Lfhi=h.
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The proof of main theorem

Formal calculuation

(Step 2) Suppose that for f € Dom(R), Rf = g € F2.
Since R : injective, f = R~"g. Then

g=>Y (9,€)ea
aENg
Rf=>" (2|l + n)(f, ea)eq
aGNg

Hence

(9, €a) = (2[a] + n){f, €a)

(f,€a) = m(g-‘?a)
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The proof of main theorem
Formal calculuation for the proof

’
—1 _ _
R'g=f= (f,ea)€0 = @alin) (g.€4) 6

a€eN EN"

os

forany g e F2 converges in F2.

Let £q= 2|a|+n Then
1 1
Rf:R Z ?<g7 ea>ea = Z 56< ?<g7 ea>ea7e/3> eﬁ
aeNg % BEND R
1
- Z gag@, ea>ea
aeNg
=Y (g.e)ea=g
aeN?
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The proof of main theorem
Repeat formal calculuation for the proof

(Step 3) R is self-adjoint and
(f,Rfy >0 V f e Dom(R) = o(R) C [0, x]
consider A(#&,) €R, V]a|= 0,1, 2,--- and (M —=R) ™"

M-R) 'g=f
S g=XMM-—-Rf
©g=) (g.eea

n
aeNo

Z (M, €0) €0 — Ealf, €0)€0)

n
aeNg

> (M= Euf,ea)en

n
a€ENG
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The proof of main theorem
Repeat formal calculuation for the proof

(9, €a) = (M — Eaf,€0) = X — Eulf, €a)

]
<Al 8a) = 3—5-(9, €a)

1 1 1 1
f= Rf+10=1 D Ealfea)ea + 3 > (9, €a)6a
aeN] aENg

0

A—Ea

n n
a€N] a€EN]

D)

converges in F? forany g € F2.
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The proof of main theorem
Repeat formal calculuation for the proof

(") Since £, — oo as |a| — oo, |+£2—| : bounded

X—Eq
Let

sup fa < o0

Hi=

la>0 | A = Ea

and
K K
Ea Ea
Pki= D (0 8a)a =) (9, €a)ea
A—Eq A—Ea
|a|=0 k=0 |a|=k
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The proof of main theorem
Repeat formal calculuation for the proof

Then for K2 > K,

Ko < Ko <
||¢K2 _¢K1||2 = Z _7a<g7 ea>ea7 Z b <g7 e/@>eﬁ
A= Ea —&s
ol =Ky +1 |8]=K;+1
o g 2 2 2 i 2
Y x5 | lgea)P <u® Y Ig.ex)* -+ Cauchy Seq
o =K +1 "‘ la)=Ky +1
Otherwise -
S l(g. ) = llglf2,
|a|=0

Therefore (Al — R)~" is defined everywhere in F2.
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The proof of main theorem
Repeat formal calculuation for the proof

(Step 4) (\/ — R)~" is bounded

_ 1 1 14
1= R) gl < 1lgll + ulgl = T2 g,

For A(# &) € R, 3 (M —R) :bounded, so X\ € p(R).
L o(R) = 0p(R).
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The fractional radial derivative

Now, we can define the fractional radial derivative by using the following theorem.

Functional Calculus

For any self-adjoint operator R and measurable function g, define a (possibly
unbounded) operator, denoted by g(R), by

g(R) = / o I

where 1 is a projection-valued measure (or spectral measure) .

Let g(x) = x°, s € R. Then by Functional Calculus,

gR)(N(2) = R*f(2) = ) _ (2|a] + n)*Caea(2).

n
aeNg
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Def of Semigroup and so on

To show that a relationship between R and a semigroup , we need a some definition.

Semigroup

Let X be Banach space and {B:}:>o be a family of linear, bounded operators
B : X — Xforallt>0.
{Bt}i>o0 is called a Semigroup iff By = | and Bsyt = BsB; V t,s > 0.

Strongly continuous semigroup

A semigroup {B:}+>o is called a strongly continuous semigroup (or Co — semigroup)
iff

IBif — f] > 0 as t — 0",VfeX.

Hyunil Choi (PNU) Fromo(R)to R July 2, 2015 16/28



Def of Semigroup and so on

Contractive or Contraction Semigroup

Let {B:}+>0 be a strongly continuous semigroup on X. Then {B;}:>¢ is called a
Contractive or Contraction Semigroup iff ||B:|| < 1, Vt>0.

Infinitesimal Generator
Let {B:}+>0 be a semigroup on X. Set

Dom(A) = {f € X:3 lm B’f_f}
t—0t t
Af = tim 21

t—07t

for f € Dom(A)

Then A'is called the infinitesimal generator of {B;}¢>o.
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Between R and {B;}+>0

Let {B;}+>0 defined by the expansion.
Bif(z) = Y e @M e, (2) for f € F?.
aeNg

Then {B;}+>0 has a following properties.

The properties of {B;}+>o

(1) Bt is a bounded operator and {B;}+>o is a strongly continuous semigroup.
(2) {Bt}=0 is a contractive semigroup.

(8) —R is the infinitesimal generator of {B;}+>o.

(4) Bif = e 'Rf, Ve F?
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Proof on {B;}+>0
() (1) and (2)

Forf e F?, Bof = f = By = idr. and V t,5 > 0,

BBsf =B | > e GlltMoc,e,

aENg
_ Z o~ @Bl <Z e_(2|“‘+")sc €a eg>eg
BENG aeNg?
— Z e—(2\a|+")(t+s)caea — Z e—(2|&\+")(5+f)caea
aeNg aGNg
_ Z e~ (2la|+n)s <Z e 2\B\+")YC 55, eﬁ> €n
aeNg BENG

=Bs| Y e ®FMce, | = BsBif = BiBsf = BsBif
BEN]

{B:} is a semigroup.
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Proof on {B;}+>0

|| Bif||%e = < Z e @altmic o Z e—(ZIﬁI+n)scﬂeB>

a€eNg BENG

_ Z e—2(2|a‘+n)t|ca|2 < e—2nt Z |Ca|2

aENg aENg
= e ?"|[flez < |fllpes t >0

. By € B(F?, F?) and contractive semigroup.
To show that {B;}: > 0 is a str contiuous semigroup, we need a following definition.
Discrete Measure

u = Z |Ck|2(5k, 0k € N

k=1
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Proof on {B;}+>0

Bf—f=3>" (e“?'“‘”)' - 1) Corba

n
a€Ng

I1Bef — fl[72 = Z ‘e‘(zlaHn)t _ ’2 G2

n
a€eNg

Let |o| := K,

lim [|Bif — fl[fe = fim >~ [e” @ — 1] jo = Iim/ o=@ 1| dpu(x
s || t ||F2 t_)(ﬁ; e | k| N( )

t—=0t Jo

u : discrete measure and by lebesgue dominate convergence,

oo
= / lim
0 t—0t

. {Bt}t>0 is a strongly continuous semigroup.

2 oo
o~ @kt _ 1’ ) du(N) :/ 0-du(\)=0
0
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Proof on {B;} >0
() @)

Bif — f 2
t

- (=Rf)

F2

Hyunil Choi (PNU)

e_z(|0t\+n)[ _1
< Z <%) Ca€q + Z 2(‘04 + n)Caea7

n
aeNg

n
aeNg

e~ 2IBl+mt _ 4

2 (f) cses + Y 216 +n)CﬁEB>

BENG BENG
—(2k+n)t 2
e —1
n + (2k +n)| Jekf?
o~ (2k+n)t—1 2
S+ k4| du(\)
e—(k+mt _ 4 2 )
——— + 1| (2k+n)du(X
kit T (2k 4+ n)"du(X)
e—(k+nt _ 4 2 oo o 12
- Yvi= 2k Ck|“6
G | W) (v @kl
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Proof on {B;}+>0

2

—(@ktn)t _
e V] avey

2 oo
lim —
F2 [—>0+\/0\ (2k + n)t
e—(2k+n)t 1

/0 RN P
lim 0-du(\) =0,

+1

- (=Rf)

Bif —f
t

t—0t
2

dv(\) byLD.C

+1
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Proof on {B;}+>0

() (4) Let g(x) = e~ ™.
Then

e Rf=e"™ Y caen| =) e @ ge, =B,

n n
a€eNg a€eNg

by The Functional Calculus.
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Conclusion and Further work

There are other ways to define the fractional operator (Fourier Series, Fourier
Transform, Quantization Map , etc). But we think that in this case, this method is a
simple and clear because the spectrum of the radial derivative consists only
eigenvalues. We will research the fractional Fock-Sobolev space and the fractional
operator defined on these space.
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Thanks

Thank you for your attention !!
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Q&A

Any question or comment?
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