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Improper Coloring Sparse Graphs on Surfaces

Preliminaries

A surface is a non-null compact connected 2-manifold without boundary.

An orientable surface: add ≥ 0 handles to the sphere
A non-orientable surface: add ≥ 1 cross-caps to the sphere

Classification of Surfaces (Möbius 1870, von Dyck 1888, Rado 1925)

A surface is either orientable or non-orientable.

Lemma (von Dyck 1888)

One handle and one cross-cap is equivalent to three cross-caps.

Euler genus γ of a surface = the number of cross-caps + 2×handles
Sγ : a surface of Euler genus γ
S0: sphere / S1: projective plane / S2: torus or Klein Bottle...
planar graph ⇔ graph (embeddable) on S0 (without edges crossings)
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Classification of Surfaces (Möbius 1870, von Dyck 1888, Rado 1925)

A surface is either orientable or non-orientable.

Lemma (von Dyck 1888)

One handle and one cross-cap is equivalent to three cross-caps.

Euler genus γ of a surface = the number of cross-caps + 2×handles
Sγ : a surface of Euler genus γ
S0: sphere / S1: projective plane / S2: torus or Klein Bottle...
planar graph ⇔ graph (embeddable) on S0 (without edges crossings)



Improper Coloring Sparse Graphs on Surfaces

Preliminaries

A surface is a non-null compact connected 2-manifold without boundary.

An orientable surface: add ≥ 0 handles to the sphere
A non-orientable surface: add ≥ 1 cross-caps to the sphere
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Classification of Surfaces (Möbius 1870, von Dyck 1888, Rado 1925)

A surface is either orientable or non-orientable.

Lemma (von Dyck 1888)

One handle and one cross-cap is equivalent to three cross-caps.

Euler genus γ of a surface = the number of cross-caps + 2×handles
Sγ : a surface of Euler genus γ

S0: sphere / S1: projective plane / S2: torus or Klein Bottle...
planar graph ⇔ graph (embeddable) on S0 (without edges crossings)



Improper Coloring Sparse Graphs on Surfaces

Preliminaries

A surface is a non-null compact connected 2-manifold without boundary.

An orientable surface: add ≥ 0 handles to the sphere
A non-orientable surface: add ≥ 1 cross-caps to the sphere
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Preliminaries

A graph G is k-colorable if the following is possible:
– each vertex receives a color from {1, . . . , k}
– adjacent vertices receive different colors

OR

– partition the vertex set of G into k parts
– each part has maximum degree at most 0

1

2

1 2

3

1

2

1 2

2

A graph G is (d1, . . . , dk)-colorable if the following is possible:
– partition the vertex set of G into k parts
– ith part has maximum degree at most di for i ∈ {1, . . . , k}
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planar graphs

Theorem (Appel–Haken 1977)

Every planar graph is 4-colorable.

Theorem (Cowen–Cowen–Woodall 1986)

Every planar graph is (2, 2, 2)-colorable.

Theorem (Eaton–Hull 1999, Škrekovski 1999)

Given k and `, there exists a non-(1, k, `)-colorable planar graph.

x y

x y...
z

· · ·

z

a

b c

Improper coloring planar graphs with at least three parts: SOLVED!
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Given k and `, there exists a non-(1, k , `)-colorable planar graph.

x y

x y...
z

· · ·

z

a

b c

Improper coloring planar graphs with at least three parts: SOLVED!



Improper Coloring Sparse Graphs on Surfaces

planar graphs

Improper coloring planar graphs with two parts..........

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15
Given (d1, d2), there exists a non-(d1, d2)-colorable planar graph!

What if we consider sparser graphs? Girth condition!
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planar graphs

Improper coloring planar graphs with two parts..........

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15
Given (d1, d2), there exists a non-(d1, d2)-colorable planar graph!

What if we consider sparser graphs? Girth condition!

Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.
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planar graphs

Improper coloring planar graphs with two parts..........

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15
Given (d1, d2), there exists a non-(d1, d2)-colorable planar graph!

What if we consider sparser graphs? Girth condition!

Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

Problem (2)

Given (g ; d1), determine the minimum d2 = d2(g ; d1) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.
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Improper coloring planar graphs with two parts..........

Cowen–Cowen–Woodall 86, Škrekovski 99 00, Montassier–Ochem 15
Given (d1, d2), there exists a non-(d1, d2)-colorable planar graph!

What if we consider sparser graphs? Girth condition!

Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

Problem (2)

Given (g ; d1), determine the minimum d2 = d2(g ; d1) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

Mad(G )= max
H⊆G

2|E (H)|
|V (H)| . If G is planar with girth g , then Mad(G )< 2g

g−2 .

Problem (3)

Given (d1, d2), determine the supremum x such that
every graph with Mad(G ) ≤ x is (d1, d2)-colorable.
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Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

Non-(d1, d2)-colorable planar graph with girth 4.

Non-(0, k)-colorable planar graph with girth 6.
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planar graphs

Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

d2 \ d1 0 1 2 3 4 5
0 ×
1

10 or 11 6 or 7

2

8 6 or 7 5 or 6

3

7 or 8 6 or 7 5 or 6 5 or 6

4

7 5 or 6 5 or 6 5 or 6 5

5

7 5 or 6 5 or 6 5 5

6

7 5 or 6 5 5 5 5
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every planar graph with girth ≥ g is (d1, d2)-colorable.
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0 ×
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Theorem (Škrekovski 2000)

g(d , d) = 5 for d ≥ 4



Improper Coloring Sparse Graphs on Surfaces

planar graphs

Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

d2 \ d1 0 1 2 3 4 5
0 ×
1

10 or 11 6 or 7

2

8 6 or 7 5 or 6

3

7 or 8 6 or 7 5 or 6 5 or 6

4

7 5 or 6 5 or 6 5 or 6
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5

7 5 or 6 5 or 6
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7 5 or 6 5 5

5 5

Theorem (Škrekovski 2000)

g(d , d) = 5 for d ≥ 4

g(d1, d2) = 5 for min{d1, d2} ≥ 4 since g(d1, d2 + 1) ≤ g(d1, d2).
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Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

d2 \ d1 0 1 2 3 4 5
0 ×
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10 or 11 6 or 7

2
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3

7 or 8 6 or 7 5 or 6 5 or 6

4

7 5 or 6 5 or 6 5 or 6

5
5

7 5 or 6 5 or 6
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7 5 or 6
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Theorem (Škrekovski 2000, Borodin–Kostochka 2011)

g(d , d) = 5 for d ≥ 4 and g(2, 6) = 5

g(d1, d2) = 5 for min{d1, d2} ≥ 4 since g(d1, d2 + 1) ≤ g(d1, d2).
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planar graphs

Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

d2 \ d1 0 1 2 3 4 5
0 ×
1

10 or 11 6 or 7

2 8

6 or 7 5 or 6

3

7 or 8 6 or 7 5 or 6 5 or 6

4 7

5 or 6 5 or 6 5 or 6

5
5 7

5 or 6 5 or 6

5 5
6 7

5 or 6

5 5 5 5

Theorem (Montassier–Ochem 2015, Borodin–Kostochka 2011, 2014)

g(0, k) = 7 for k ≥ 4
g(0, 2) = 8
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Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.
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0 ×
1 10 or 11
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2 8
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Effort to determine g(0, 1).....

g(0, 1) ≤ 16 2007 Glebov–Zambalaeva
g(0, 1) ≤ 14 2009 Borodin–Ivanova
g(0, 1) ≤ 12 2011 Borodin–Kostochka
g(0, 1) ≥ 10 2013 Esperet–Montassier–Ochem–Pinlou
g(0, 1) ≤ 11 2014 Kim–Kostochka–Zhu
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d2 \ d1 0 1 2 3 4 5
0 ×
1 10 or 11 6 or 7
2 8 6 or 7 5 or 6
3 7 or 8 6 or 7 5 or 6 5 or 6
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No value of g(1, d2) was determined!
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every planar graph with girth ≥ g is (d1, d2)-colorable.
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0 ×
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3 7 or 8 6 or 7 5 or 6 5 or 6
4 7 5 or 6 5 or 6 5 or 6 5
5 7 5 or 6 5 or 6 5 or 6 5 5
6 7 5 or 6 5 5 5 5

Question (Raspaud 2013)

Is a planar graph with girth ≥5 indeed (d1, d2)-colorable for all d1+d2≥8?
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planar graphs

Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

d2 \ d1 0 1 2 3 4 5
0 ×
1 10 or 11 6 or 7
2 8 6 or 7 5 or 6
3 7 or 8 6 or 7 5 or 6 5 or 6
4 7 5 or 6 5 or 6 5 or 6 5
5 7 5 or 6 5 or 6 5 or 6 5 5
6 7 5 or 6 5 5 5 5

Question (Raspaud 2013, Montassier–Ochem 2015)

Is a planar graph with girth ≥5 indeed (d1, d2)-colorable for all d1+d2≥8?
Is there a d2 such that g(1, d2) = 5?
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planar graphs

Problem (1)

Given (d1, d2), determine the minimum g = g(d1, d2) such that
every planar graph with girth ≥ g is (d1, d2)-colorable.

d2 \ d1 0 1 2 3 4 5
0 ×
1 10 or 11 6 or 7
2 8 6 or 7 5 or 6
3 7 or 8 6 or 7 5 or 6 5 or 6
4 7 5 or 6 5 or 6 5 or 6 5
5 7 5 or 6 5 or 6 5 5 5
6 7 5 or 6 5 5 5 5

Theorem (C.–Raspaud 2015)

g(3, 5) = 5. Every planar graph with girth ≥ 5 is (3, 5)-colorable.
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7 e
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planar graphs

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on Sγ with girth ≥ 5 is (1,max
{

10, d 12γ+47
7 e

}
)-colorable. T!

Tightness example:

Goal: construct a non-(1, k)-colorable graph on SO(k)

A triple is three vertices that induces at most one edge.
Given a triple, let “adding a P3” mean the following:

x z

y

⇒

x z

y

x′

y′

z′

Obtain Gk in the following way:
– Start with C7.
– Do the operation of adding a P3 to each triple 3k + 1 times.

In a (1, k)-coloring of C7, there must be a triple T all colored with k.
At least one P3 that was added to T cannot have a vertex of color k.

Gk has 7 + 5(3k + 1) ·
((

7
3

)
− 7
)

edges, so the Euler genus is linear in k.
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graphs on surfaces

Graphs on surfaces!

Sγ : a surface of Euler genus γ
planar graph ⇔ graph (embeddable) on S0

Theorem (Appel–Haken 1977)

Every planar graph is (0, 0, 0, 0)-colorable.

For each k, `, there exists a non-(1, k, `)-colorable planar graph.

Theorem (Cowen–Cowen–Woodall 1986)

Every planar graph is (2, 2, 2)-colorable.

Conjecture (Cowen–Cowen–Woodall 1986)

Every graph on Sγ is (c3, c3, c3)-colorable for some c3 = c3(γ).

Theorem (Archdeacon 87, Cowen–Cowen–Jesurum 97, Woodall 2011)

Every graph on Sγ is (c3, c3, c3)-colorable with c3 = max{15, 3γ−8
2 }.

with c3 = max{12, 6 +
√

6γ}.
with c3 = max{9, 2 +

√
4γ + 6}.
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Theorem (C.–Esperet 2016++)
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Improper coloring graphs on surfaces: SOLVED!



Improper Coloring Sparse Graphs on Surfaces

graphs on surfaces

Graphs on surfaces! Sγ : a surface of Euler genus γ
planar graph ⇔ graph (embeddable) on S0

Theorem (Appel–Haken 1977)

Every graph on S0 is (0, 0, 0, 0)-colorable.

For each k , `, there exists a non-(1, k , `)-colorable planar graph.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S0 is (2, 2, 2)-colorable.
Every graph on Sγ is (c4, c4, c4, c4)-colorable with c4= max{14, d 4γ−11

3 e}.

Theorem (Woodall 2011)

Every graph on Sγ is (c3, c3, c3)-colorable with c3= max{9, 2 +
√

4γ + 6}.

Theorem (C.–Esperet 2016++)

For γ > 0, every graph on Sγ is (0, 0, 0, 9γ − 4)-colorable.
For γ > 0, every graph on Sγ is ( 2, 2, 9γ − 4)-colorable.

Improper coloring graphs on surfaces: SOLVED!



Improper Coloring Sparse Graphs on Surfaces

graphs on surfaces

Graphs on surfaces! Sγ : a surface of Euler genus γ
planar graph ⇔ graph (embeddable) on S0

Theorem (Appel–Haken 1977)

Every graph on S0 is (0, 0, 0, 0)-colorable.

For each k , `, there exists a non-(1, k , `)-colorable planar graph.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S0 is (2, 2, 2)-colorable.
Every graph on Sγ is (c4, c4, c4, c4)-colorable with c4= max{14, d 4γ−11

3 e}.

Theorem (Woodall 2011)

Every graph on Sγ is (c3, c3, c3)-colorable with c3= max{9, 2 +
√

4γ + 6}.

Theorem (C.–Esperet 2016++)

For γ > 0, every graph on Sγ is (0, 0, 0, 9γ − 4)-colorable.
For γ > 0, every graph on Sγ is ( 2, 2, 9γ − 4)-colorable.

Improper coloring graphs on surfaces: SOLVED!



Improper Coloring Sparse Graphs on Surfaces

graphs on surfaces

Graphs on surfaces! Sγ : a surface of Euler genus γ
planar graph ⇔ graph (embeddable) on S0

Theorem (Appel–Haken 1977)

Every graph on S0 is (0, 0, 0, 0)-colorable.

For each k , `, there exists a non-(1, k , `)-colorable planar graph.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S0 is (2, 2, 2)-colorable.
Every graph on Sγ is (c4, c4, c4, c4)-colorable with c4= max{14, d 4γ−11

3 e}.

Theorem (Woodall 2011)

Every graph on Sγ is (c3, c3, c3)-colorable with c3= max{9, 2 +
√

4γ + 6}.

Theorem (C.–Esperet 2016++)

For γ > 0, every graph on Sγ is (0, 0, 0, 9γ − 4)-colorable. Tight!
For γ > 0, every graph on Sγ is ( 2, 2, 9γ − 4)-colorable. Tight!

Improper coloring graphs on surfaces: SOLVED!



Improper Coloring Sparse Graphs on Surfaces

graphs on surfaces

Graphs on surfaces! Sγ : a surface of Euler genus γ
planar graph ⇔ graph (embeddable) on S0

Theorem (Appel–Haken 1977)

Every graph on S0 is (0, 0, 0, 0)-colorable.

For each k , `, there exists a non-(1, k , `)-colorable planar graph.

Theorem (Cowen–Cowen–Woodall 1986)

Every graph on S0 is (2, 2, 2)-colorable.
Every graph on Sγ is (c4, c4, c4, c4)-colorable with c4= max{14, d 4γ−11

3 e}.

Theorem (Woodall 2011)

Every graph on Sγ is (c3, c3, c3)-colorable with c3= max{9, 2 +
√

4γ + 6}.

Theorem (C.–Esperet 2016++)

For γ > 0, every graph on Sγ is (0, 0, 0, 9γ − 4)-colorable. Tight!
For γ > 0, every graph on Sγ is ( 2, 2, 9γ − 4)-colorable. Tight!

Improper coloring graphs on surfaces: SOLVED!



Improper Coloring Sparse Graphs on Surfaces

graphs on surfaces

Improper coloring sparser graphs on surfaces................

girth condition!

Girth 4: There exists a non-(d1, d2)-colorable planar graph with girth 4!

Theorem (Grötzsch 1959)

Theorem (C.–Esperet 2016++)

Every graph on Sγ with girth ≥ 4 is (0, 0, d 10γ+32
3 e)-colorable.

Girth 5:

There exists a non-(0, k)-colorable planar graph with girth 6!

Theorem (Choi–C.–Jeong–Suh 2016+)

Every graph on Sγ with girth ≥ 5 is (1,max
{

10, d 12γ+47
7 e

}
)-colorable. T!

Girth 6: There exists a non-(0, k)-colorable planar graph with girth 6!
Girth 7:

Theorem (C.–Esperet 2016++)

Every graph on Sγ with girth ≥ 7 is T!

Improper coloring graphs on surfaces with girth conditions: SOLVED!
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Theorem (C.–Esperet 2016++, Choi–C.–Jeong–Suh 2016+)

A graph on Sγ with γ > 0 is (0, 0, 0, 9γ − 4 )-colorable.
A graph on Sγ with γ > 0 is ( 2, 2, 9γ − 4 )-colorable.
A graph on Sγ with girth ≥ 4 is ( 0, 0, d 10γ+32

3 e )-colorable.

A graph on Sγ with girth ≥ 5 is ( 1,max
{

10, d 12γ+47
7 e

}
)-colorable.

A graph on Sγ with girth ≥ 7 is ( 0, 5 + d√14γ + 22e )-colorable.

There exists a non-(1, k , `)-colorable planar graph.
There exists a non-( k , `)-colorable planar graph with girth 4!
There exists a non-( 0, k)-colorable planar graph with girth 6!

Theorem (C.–Esperet 2016++)

A graph on Sγ with girth ≥ ` is (0,O(
√
γ/`))-colorable.

Lemma (C.–Esperet 2016++)

If v is a vertex of a connected graph G on Sγ with γ > 0,
then there exists a connected subgraph H containing v such that
G/H is planar and every vertex of G has at most 9γ − 4 neighbors in H.



Improper Coloring Sparse Graphs on Surfaces

graphs on surfaces

Theorem (C.–Esperet 2016++, Choi–C.–Jeong–Suh 2016+)

A graph on Sγ with γ > 0 is (0, 0, 0, 9γ − 4 )-colorable.
A graph on Sγ with γ > 0 is ( 2, 2, 9γ − 4 )-colorable.
A graph on Sγ with girth ≥ 4 is ( 0, 0, d 10γ+32

3 e )-colorable.

A graph on Sγ with girth ≥ 5 is ( 1,max
{

10, d 12γ+47
7 e

}
)-colorable.

A graph on Sγ with girth ≥ 7 is ( 0, 5 + d√14γ + 22e )-colorable.

There exists a non-(1, k , `)-colorable planar graph.
There exists a non-( k , `)-colorable planar graph with girth 4!
There exists a non-( 0, k)-colorable planar graph with girth 6!

Theorem (C.–Esperet 2016++)

A graph on Sγ with girth ≥ ` is (0,O(
√
γ/`))-colorable.

Lemma (C.–Esperet 2016++)

If v is a vertex of a connected graph G on Sγ with γ > 0,
then there exists a connected subgraph H containing v such that
G/H is planar and every vertex of G has at most 9γ − 4 neighbors in H.



Improper Coloring Sparse Graphs on Surfaces

graphs on surfaces

Theorem (C.–Esperet 2016++, Choi–C.–Jeong–Suh 2016+)

A graph on Sγ with γ > 0 is (0, 0, 0, 9γ − 4 )-colorable.
A graph on Sγ with γ > 0 is ( 2, 2, 9γ − 4 )-colorable.
A graph on Sγ with girth ≥ 4 is ( 0, 0, d 10γ+32

3 e )-colorable.

A graph on Sγ with girth ≥ 5 is ( 1,max
{

10, d 12γ+47
7 e

}
)-colorable.

A graph on Sγ with girth ≥ 7 is ( 0, 5 + d√14γ + 22e )-colorable.

There exists a non-(1, k , `)-colorable planar graph.
There exists a non-( k , `)-colorable planar graph with girth 4!
There exists a non-( 0, k)-colorable planar graph with girth 6!

Theorem (C.–Esperet 2016++)

A graph on Sγ with girth ≥ ` is (0,O(
√
γ/`))-colorable.

Lemma (C.–Esperet 2016++)

If v is a vertex of a connected graph G on Sγ with γ > 0,
then there exists a connected subgraph H containing v such that
G/H is planar and every vertex of G has at most 9γ − 4 neighbors in H.



Improper Coloring Sparse Graphs on Surfaces

open problems

Future directions..............

PLANAR graphs:

Determine the remaining values in this table of g(d1, d2):

d2 \ d1 0 1 2 3 4 5
0 ×
1 10 or 11 6 or 7
2 8 6 or 7 5 or 6
3 7 or 8 6 or 7 5 or 6 5 or 6
4 7 5 or 6 5 or 6 5 or 6 5
5 7 5 or 6 5 or 6 5 5 5
6 7 5 or 6 5 5 5 5
7 7 5 or 6 5 5 5 5
8 7 5 or 6 5 5 5 5
9 7 5 or 6 5 5 5 5

10 7 5 5 5 5 5

Determine g(0, 1)!

Is there another “jump” besides between g(0, 1) and g(0, 2)?!
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open problems

Future directions.............. graphs on SURFACES:

Theorem (C.–Esperet 2016++)

A graph on Sγ with girth ≥ ` is (0,O(
√
γ/`))-colorable.

Conjecture (C.–Esperet 2016++)

There is a function c(`)→ 0 as `→∞ such that
a graph on Sγ with girth ≥ ` is (0,O(γc(`)))-colorable.

(0, k)-colorable implies (k + 2)-coloring. We know c(`) ∈ Ω( 1
2`+2 ).

Theorem (Gimbel–Thomassen 1997)

For `, there is c > 0 such that for small ε > 0 and sufficiently large γ,

there are graphs on Sγ with girth ≥ ` that are not cγ
1−ε
2`+2 -colorable.

Theorem (Cowen–Goddard–Jesurum 1997)

Every toroidal graph is (1, 1, 1, 1, 1)-colorable and (2, 2, 2)-colorable.

Question: Is every toroidal graph (1, 1, 1, 1)-colorable?
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open problems

Thank you for your attention!
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