Association Schemes All Of Whose Symmetric Fusions Are Integral

Semin Oh (오세민) Joint work with Mitsugu Hirasaka and Kijung Kim 2016. 06. 23. 79th OSACA

Pusan National University

Preliminaries

Definition. (Association Scheme)

Let *X* be a finite set and *S* a partition of $X \times X$. We say that the pair (*X*, *S*) is an **association scheme** (or shortly **scheme**) if it satisfies the following:

```
(i) \{(x, x) \mid x \in X\} \in S;
```

```
(ii) For s \in S, s^* = \{(y, x) \mid (x, y) \in s\} \in S;
```

```
(iii) For s, t, u \in S, the number of \{z \mid (x, z) \in s, (z, y) \in t\} is constant whenever (x, y) \in u. The constant is denoted by a_{stu}.
```

We say (X, S) is **symmetric** if for each $s \in S$, $s = s^*$. A scheme (X, T) is a **fusion** of (X, S) if for each $t \in T$, t is a union of elements of S.

Definition. (Adjacency Matrix)

Let (X, S) be a scheme. For $s \in S$, the **adjacency matrix** of *s* is defined by

$$(\sigma_s)_{x,y} = \begin{cases} 1, & \text{if } (x,y) \in s, \\ 0, & \text{otherwise.} \end{cases}$$

A scheme (X, S) is called **integral** if for any $s \in S$, $ev(\sigma_s) \subset \mathbb{Z}$ where $ev(\sigma_s)$ is the set of all eigenvalues of σ_s .

Remark.

(X, S) is symmetric iff for any $s \in S$, σ_s is symmetric.

Example 1. (Finite Groups)

Let *G* be a finite group. Then (G, \tilde{G}) is a scheme where

 $\tilde{G} = \{\tilde{g} \mid g \in G\}$ and $\tilde{g} = \{(a, b) \in G \times G \mid ag = b\}.$

- Since G̃ contains ẽ and g⁻¹ = g̃* for any g ∈ G,
 (i) and (ii) are clear.
- For $g_1, g_2, g_3 \in G$ and $(x, y) \in \tilde{g_3}$, we have $a_{\tilde{g_1}\tilde{g_2}\tilde{g_3}} = |\{z \mid (x, z) \in \tilde{g_1}, (z, y) \in \tilde{g_2}\}| = \delta_{g_1g_2,g_3}$, where δ is the Kronecker delta.

So (iii) is also satisfied. Thus (G, \tilde{G}) is a scheme.

Example 2. (The Dihedral Group of Order 8)

Let $G = D_8$ be the dihedral group of order 8. (G, \tilde{G}) has a symmetric fusion scheme but not integral.

Let
$$G = \langle a, b \rangle$$
 with $o(a) = 4$, $o(b) = 2$, $bab = a^{-1}$. Then
 $G = \{1_G, a, a^2, a^3, b, ba, ba^2, ba^3\}$ and the elements of \tilde{G} are
• $s_0 := \tilde{1}_G = \{(g, g) \mid g \in G\},$
• $s_1 := \tilde{a} = \{(1_G, a), (a, a^2), (a^2, a^3), (a^3, 1_G), (b, ba), (ba, ba^2), (ba^2, ba^3), (ba^3, b)\},$
• $s_2 := \tilde{a^2} = \{(1_G, a^2), (a, a^3), (a^2, 1_G), (a^3, a), (b, ba^2), (ba, ba^3), (ba^2, b), (ba^3, ba)\},$

So we have $\tilde{G} = \{s_0, s_1, ..., s_7\}.$

Consider the matrix $0\sigma_{s_0} + 1\sigma_{s_1} + \cdots + 7\sigma_{s_7} =$

$$\sum_{i=0}^{7} i\sigma_{s_i} = \begin{bmatrix} 1_G & a & a^2 & a^3 & b & ba & ba^2 & ba^3 \\ 1_G & \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 0 & 1 & 2 & 5 & 6 & 7 & 4 \\ 2 & 3 & 0 & 1 & 6 & 7 & 4 & 5 \\ 1 & 2 & 3 & 0 & 7 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\ 5 & 6 & 7 & 4 & 3 & 0 & 1 & 2 \\ 6 & 7 & 4 & 5 & 2 & 3 & 0 & 1 \\ 7 & 4 & 5 & 6 & 1 & 2 & 3 & 0 \end{bmatrix}.$$

Consider the matrix $0\sigma_{s_0} + 1\sigma_{s_1} + \cdots + 7\sigma_{s_7} =$

$$\sum_{i=0}^{7} i\sigma_{s_i} = \begin{bmatrix} 1_G & a & a^2 & a^3 & b & ba & ba^2 & ba^3 \\ 1_G & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 0 & 1 & 2 & 5 & 6 & 7 & 4 \\ 2 & 3 & 0 & 1 & 6 & 7 & 4 & 5 \\ 1 & 2 & 3 & 0 & 7 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\ ba^2 & ba^2 & ba^3 & 7 & 4 & 5 & 6 & 1 & 2 & 3 & 0 \end{bmatrix}.$$

Note that $\sigma_{s_1}, \sigma_{s_3}$ are not symmetric.

If we take $\begin{array}{ccc} t_0 := s_0, & t_1 := s_1 \cup s_3, & t_2 := s_2, \\ t_3 := s_4 \cup s_5, & t_4 := s_6 \cup s_7, \end{array}$ then

 $(G, \{t_0, t_1, t_2, t_3, t_4\})$ is a symmetric fusion scheme of (G, \tilde{G}) .

$$\sum_{i=0}^{4} i\sigma_{t_i} = \begin{pmatrix} 0 & 1 & 2 & 1 & 3 & 3 & 4 & 4 \\ 1 & 0 & 1 & 2 & 3 & 4 & 4 & 3 \\ 2 & 1 & 0 & 1 & 4 & 4 & 3 & 3 \\ 1 & 2 & 1 & 0 & 4 & 3 & 3 & 4 \\ 3 & 3 & 4 & 4 & 0 & 1 & 2 & 1 \\ 3 & 4 & 4 & 3 & 1 & 0 & 1 & 2 \\ 4 & 4 & 3 & 3 & 2 & 1 & 0 & 1 \\ 4 & 3 & 3 & 4 & 1 & 2 & 1 & 0 \end{pmatrix}$$

If we take $\begin{array}{ccc} t_0 := s_0, & t_1 := s_1 \cup s_3, & t_2 := s_2, \\ t_3 := s_4 \cup s_5, & t_4 := s_6 \cup s_7, \end{array}$ then

 $(G, \{t_0, t_1, t_2, t_3, t_4\})$ is a symmetric fusion scheme of (G, \tilde{G}) .

$$\sum_{i=0}^{4} i\sigma_{t_i} = \begin{pmatrix} 0 & 1 & 2 & 1 & 3 & 3 & 4 & 4 \\ 1 & 0 & 1 & 2 & 3 & 4 & 4 & 3 \\ 2 & 1 & 0 & 1 & 4 & 4 & 3 & 3 \\ 1 & 2 & 1 & 0 & 4 & 3 & 3 & 4 \\ 3 & 3 & 4 & 4 & 0 & 1 & 2 & 1 \\ 3 & 4 & 4 & 3 & 1 & 0 & 1 & 2 \\ 4 & 4 & 3 & 3 & 2 & 1 & 0 & 1 \\ 4 & 3 & 3 & 4 & 1 & 2 & 1 & 0 \end{pmatrix}$$

But not integral since $ev(\sigma_{t_3}) = \{0, 0, \pm 2, \pm \sqrt{2}, \pm \sqrt{2}\}$.

Definition.

Let *G* be a finite group. We say that *G* is **desired** if any symmetric fusion scheme of (G, \tilde{G}) is integral. If *G* is not desired then it is called **undesired**.

Definition.

Let *G* be a finite group. We say that *G* is **desired** if any symmetric fusion scheme of (G, \tilde{G}) is integral. If *G* is not desired then it is called **undesired**.

Problem.

Classify all desired groups.

Cayley Integral Groups

A graph is called **integral** if its adjacency matrix has only integral eigenvalues. Let G be a finite group and a subset H in $G \setminus \{1_G\}$ such that if $h \in H$, then $h^{-1} \in H$. The **undirected Cayley graph** Cay(G, H) of G over the set H is the graph whose vertex set is G and two vertices a and b are adjacent whenever ah = b for some $h \in H$. We call a finite group G Cayley integral whenever all undirected Cayley graphs over *G* are integral. In 2010¹- 2014², all finite Cayley integral groups are completely classified by many authors.

¹Klotz and Sander, "Integral Cayley graphs over abelian groups".

²Abdollahi and Jazaeri, "Groups all of whose undirected Cayley graphs are integral".

A graph is called **integral** if its adjacency matrix has only integral eigenvalues. Let G be a finite group and a subset H in $G \setminus \{1_G\}$ such that if $h \in H$, then $h^{-1} \in H$. The **undirected Cayley graph** Cay(G, H) of G over the set H is the graph whose vertex set is G and two vertices a and b are adjacent whenever ah = b for some $h \in H$. We call a finite group G Cayley integral whenever all undirected Cayley graphs over G are integral. In 2010¹- 2014², all finite Cayley integral groups are completely classified by many authors.

Remark.

Every finite Cayley integral group is desired.

¹Klotz and Sander, "Integral Cayley graphs over abelian groups".
²Abdollahi and Jazaeri, "Groups all of whose undirected Cayley graphs are integral".

Theorem. A. Abdollahi M. Jazaeri (2014)

A finite group is Cayley integral if and only if it is isomorphic to one of the following:

- (i) an abelian group whose exponent dividing 4 or 6;
- (ii) Q₈ × C₂^m for some nonnegative integer *m* where Q₈ is the quaternion group and C_n is the cyclic group of degree *n*;

(iii) S_3 where S_n is the symmetric group of degree n;

(iv)
$$C_3 \rtimes C_4 = \langle x, y \mid x^3 = y^4 = 1, y^{-1}xy = x^{-1} \rangle.$$

Main Result

Theorem. M. Hirasaka K. Kim O (2016+)

A group is desired if and only if it is isomorphic to one of the following:

- (i) an abelian group whose exponent divides 4 or 6;
- (ii) Q₈ × C₂^m for some nonnegative integer *m* where Q₈ is the quaternion group and C_n is the cyclic group of degree *n*;

(iii) S_3 where S_n is the symmetric group of degree n; (iv) $C_3 \rtimes C_4 = \langle x, y \mid x^3 = y^4 = 1, y^{-1}xy = x^{-1} \rangle$; (v) $\boxed{S_3 \times C_2}$.

Lemma 1.

Any subgroup or any homomorphic image of a desired group is desired.

Lemma 2.

The order of any elements of a desired group is one of $\{1, 2, 3, 4, 6\}$. In particular, the order of a desired group is written as $2^a 3^b$ for some nonnegative integers *a*, *b*.

Circulant Matrix

An $n \times n$ circulant matrix is of the form

$$\begin{pmatrix} c_0 & c_{n-1} & \cdots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & & c_2 \\ \vdots & c_1 & c_0 & \ddots & \vdots \\ c_{n-2} & & \ddots & \ddots & c_{n-1} \\ c_{n-1} & c_{n-2} & \cdots & c_1 & c_0 \end{pmatrix}$$

Eigenvalues of A Real Circulant Matrix:

$$\lambda_k = c_0 + c_{n-1}\omega_k + c_{n-2}\omega_k^2 + \ldots + c_1\omega_k^{n-1}, \qquad k = 0, 1, \ldots, n-1$$

where $\omega_k = \exp\left(\frac{2\pi k\sqrt{-1}}{n}\right)$ are the *n*-th roots of unity.

Proof of Lemma 2

Proof. Let *G* be a desired group and $x \in G$ with order *n*. By Lemma 1, $H := \langle x \rangle$ is desired. Take $T := \{\tilde{y} \cup \tilde{y^{-1}} | y \in H\}$. Then (H, T) is a symmetric fusion scheme of (H, \tilde{H}) . For any $\tilde{y} \cup \tilde{y^{-1}} \in T$, $\sigma_{\tilde{y} \cup \tilde{y^{-1}}}$ is a circulant matrix. For example,

$$\sigma_{\tilde{x}\cup\tilde{x}-1} = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 1 & & \vdots \\ 0 & 0 & 1 & 0 & \ddots & \\ \vdots & \vdots & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & & 1 & 0 \end{pmatrix}$$

By the well-known eigenvalues of circulant matrices, we have $ev(\sigma_{\tilde{y}\cup \tilde{y^{-1}}}) = \{2\cos(\frac{2\pi k}{n}) \mid k = 0, 1, \dots, n-1\}$. So $n \in \{1, 2, 3, 4, 6\}$. If *G* has an element with a prime order $p \notin \{1, 2, 3, 4, 6\}$, then we can find a subgroup of *G* such that a symmetric fusion scheme of it is not integral. This implies that *G* is an undesired group.

Undesired Groups with Small Order

Example 3. (Undesired Groups)

The following groups are undesired:

- D₈,
- A₄,
- $(C_3 \times C_3) \rtimes C_2$ by the action of the inverse map,
- $S_3 \times C_3$,
- $C_2 \times C_2 \times S_3$,
- $(C_3 \rtimes C_4) \times C_2$,
- Non-abelian groups of order 27.

Let *G* be a desired group.

Case 1. G is abelian.

By Lemma 2, the order of any element of *G* divides 4 or 6. Then the exponent of *G* so does.

Let *G* be a desired group.

Case 1. G is abelian.

By Lemma 2, the order of any element of G divides 4 or 6. Then the exponent of G so does. (i) \checkmark

Case 2-1. *G* has no two non-commuting involutions.

Case 2-1. *G* has no two non-commuting involutions.

Lemma.

If *G* is a desired non-abelian 2-group, then *G* is isomorphic to $Q_8 \times C_2^m$ for some nonnegative integer *m*.

Lemma.

If *G* is a desired non-abelian group such that all two involutions commute for each other, *G* is isomorphic to $C_3 \rtimes C_4$ unless *G* is a 2-group.

Case 2-1. *G* has no two non-commuting involutions.

Lemma.

If *G* is a desired non-abelian 2-group, then *G* is isomorphic to $Q_8 \times C_2^m$ for some nonnegative integer *m*.

Lemma.

If *G* is a desired non-abelian group such that all two involutions commute for each other, *G* is isomorphic to $C_3 \rtimes C_4$ unless *G* is a 2-group.

Then *G* is isomorphic to $Q_8 \times C_2^m$ or $C_3 \rtimes C_4$.

Case 2-1. *G* has no two non-commuting involutions.

Lemma.

If *G* is a desired non-abelian 2-group, then *G* is isomorphic to $Q_8 \times C_2^m$ for some nonnegative integer *m*.

Lemma.

If *G* is a desired non-abelian group such that all two involutions commute for each other, *G* is isomorphic to $C_3 \rtimes C_4$ unless *G* is a 2-group.

Then *G* is isomorphic to $Q_8 \times C_2^m$ or $C_3 \rtimes C_4$.

(ii), (iv) 🗸

Lemma.

Let *G* be a desired group. If *G* has two non-commuting involutions, then |G| = 6 or 12.

Lemma.

Let *G* be a desired group. If *G* has two non-commuting involutions, then |G| = 6 or 12.

All desired non-abelian groups of order 6 or 12 are known to be $S_3, S_3 \times C_2$ or $C_3 \rtimes C_4$.

Lemma.

Let *G* be a desired group. If *G* has two non-commuting involutions, then |G| = 6 or 12.

All desired non-abelian groups of order 6 or 12 are known to be $S_3, S_3 \times C_2$ or $C_3 \rtimes C_4$.

(:: it has no two non-commuting involutions.)

(iii), (v) 🗸

Lemma.

Let *G* be a desired group. If *G* has two non-commuting involutions, then |G| = 6 or 12.

All desired non-abelian groups of order 6 or 12 are known to be $S_3, S_3 \times C_2$ or $C_3 \rtimes C_4$. (: it has no two non-commuting involutions.) (iii), (V) \checkmark

Thus this proof is done.

Thank you 👻