Pell's Equation

Semin Oh (오 세 민)

2016. 07. 07. The 80th Open Seminar on Algebras, Combinatorics and Algorithms

Pusan National University

[Introduction](#page-1-0)

A **Diophantine equation** is an equation in which only integer solutions are allowed. A **Pell's equation** is a kind of Diophantine equations.

Definition. (Pell's Equation) $x^2 - Dy^2 = 1$, *D* $\in \mathbb{Z}_{>0}$

Problem

A Short History of Pell's Equation

A Short History

Brahmagupta (598-670)

A Short History of Pell's Equation

A Short History

Bhaskaracharya (1114-1185)

A Short History of Pell's Equation

A Short History

Pierre de Fermat (1601-1665)

William Bouncker (1585-1645)

BEHIND STORY..

John Wallis described Brouncker's method in a book on algebra and number theory, and Wallis and Fermat both asserted that Pell's equation always has a nontrivial solution.

Leonhard Euler mistakenly thought that the method in Wallis's book was due to **John Pell**, another English mathematician, and it is Euler who assigned the equation the name by which it has since been known.

A Short History

John Wallis (1616-1703)

BEHIND STORY..

John Wallis described Brouncker's method in a book on algebra and number theory, and Wallis and Fermat both asserted that Pell's equation always has a nontrivial solution.

Leonhard Euler mistakenly thought that the method in Wallis's book was due to **John Pell**, another English mathematician, and it is Euler who assigned the equation the name by which it has since been known.

A Short History

Loenhard Euler (1707-1783)

John Pell (1611-1685)

[Preliminaries](#page-14-0)

Theorem 0. (Lagrange 1768)

For every positive integer *D* that is not a square, the equation $x^2 - Dy^2 = 1$ has a nontrivial solution.

Remarks. If $D = m^2$ for some integer m , then there are only trivial solutions $(x, y) = (\pm 1, 0)$, since

$$
x^{2}-m^{2}y^{2}=1 \iff x-my = -1 \qquad x-my = 1
$$
\n
$$
x+my = -1 \qquad x-my = 1
$$
\n
$$
x+my = -1 \qquad x+my = 1
$$

Note that if (x, y) is a solution, $(-x, -y)$ and $(\mp x, \pm y)$ are also solutions. So it suffice to consider **only positive solutions**.

Theorem 0. (Lagrange 1768)

For every positive integer *D* that is not a square, the equation $x^2 - Dy^2 = 1$ has a nontrivial solution.

Remarks. If $D = m^2$ for some integer m , then there are only trivial solutions $(x, y) = (\pm 1, 0)$, since

$$
x^{2}-m^{2}y^{2}=1 \iff x-my = -1 \qquad x-my = 1
$$
\n
$$
x+my = -1 \qquad x-my = 1
$$
\n
$$
x+my = -1 \qquad x+my = 1
$$

Note that if (x, y) is a solution, $(-x, -y)$ and $(\mp x, \pm y)$ are also solutions. So it suffice to consider **only positive solutions**.

Now we assume that *D* is not a square number.

Continued Fraction

Definition. (Continued Fraction)

where $a_1 \in \mathbb{Z}$ and $a_i \in \mathbb{Z}_{>0}$ $(i \geq 2)$, is called a **(simple) continued fraction**. We will denote the above fraction by the symbol

 $[a_1, a_2, \ldots, a_n].$

Proposition.

For any $\alpha \in \mathbb{R}$, the expression of the continued fraction of α is uniquely determined.

Examples.

(a)
$$
\frac{5}{7} = 0 + \frac{1}{1 + \frac{1}{2 + \frac{1}{2}}} = [0, 1, 2, 2]
$$

\n(b) $-\frac{9}{7} = -2 + \frac{5}{7} = -2 + [0, 1, 2, 2] = [-2, 1, 2, 2]$
\n(c) $\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \dots}} = [1, 2, 2, \dots]$

Definition. (Convergent)

A continued fraction $[a_1, a_2, \ldots, a_m]$ by ignoring all of the terms after a given term is called a **convergent** to the original continued fractions. The *n***th convergent** is $[a_1, \ldots, a_n]$.

Definition. (Sequences of Convergents)

For a continued fraction $[a_1, a_2, \ldots, a_m]$ with $a_1 \in \mathbb{Z}_{\geq 0}$, define two sequences (p_n) and (q_n) consist of positive integers such that

$$
\frac{p_n}{q_n} = [a_1, a_2, \dots, a_n]
$$

and p_n, q_n are coprime for each $1 \le n \le m$.

Well Known Recurrence Relation:

$$
p_{n+2} = a_{n+2}p_{n+1} + p_n \qquad q_{n+2} = a_{n+2}q_{n+1} + q_n
$$

Example. ([√] 7**)**

Let
$$
\alpha_1 = \sqrt{7}
$$
 and let $a_n = \lfloor \alpha_n \rfloor$, $\alpha_{n+1} = \frac{1}{\alpha_n - a_n}$.

[Solution to Pell's Equations](#page-21-0)

Theorem 1. (Dirichlet's Diophantine Approximation)

Let α be an irrational number. If a/b is a rational number with positive denominator such that

$$
\left|\alpha - \frac{a}{b}\right| < \frac{1}{2b^2}
$$

then a/b is one of the convergents to α .

See Chapter 33 in the Silverman's book¹.

¹ Joseph H Silverman. A Friendly Introduction to Number Theory. Pearson, 2013.

Solution to Pell's Equation

Theorem 2.

Let *D* be a positive integer that is not a square. If x_0, y_0 is a positive solution to

$$
x^2 - Dy^2 = 1
$$

then x_0/y_0 is one of the convergents to \sqrt{D} .

Proof Since x_0, y_0 is a positive solution to $x^2 - Dy^2 = 1$, then $(x_0 - y_0 \sqrt{D})(x_0 + y_0 \sqrt{D}) = 1$ which implies that $x_0 > y_0 \sqrt{D}$. Therefore, √

$$
0 < \frac{x_0}{y_0} - \sqrt{D} = \frac{1}{y_0(x_0 + y_0\sqrt{D})} < \frac{1}{y_0(y_0\sqrt{D} + y_0\sqrt{D})} < \frac{\sqrt{D}}{2y_0^2\sqrt{D}}.
$$

It follows from Theorem 1 that x_0/y_0 is a convergent to \sqrt{D} .

[Solution to](#page-24-0) [Generalized Pell's Equations](#page-24-0)

Theorem 3.

Let *n* be an integer and *D* a nonsquare positive integer with |*n*| < *D*. If positive integers *x* and *y* satisfy *x* ²−*Dy*² = with $|n| < \sqrt{D}$. If positive integers x and y satisfy $x^2 - Dy^2 = n$ then x/y is a convergent to the continued fraction of \sqrt{D} .

Proof Taking α = √ \overline{D} , if $x^2 - Dy^2 = n$ with $|n| <$ √ *D* and *x*, *y* > 0 then √

$$
\left|\frac{x}{y} - \sqrt{D}\right| = \frac{|n|}{y^2(x/y + \sqrt{D})} < \frac{\sqrt{D}}{y^2(x/y + \sqrt{D})} = \frac{1}{y^2(x/(y\sqrt{D}) + 1)}.
$$
\nIf $n > 0$ then $x^2 - Dy^2 = n > 0 \implies x^2 > Dy^2$, so $x > y\sqrt{D}$ since x and y are positive. Then the blue fraction is $\left[\text{less than } \frac{1}{2y^2}\right]$. By Theorem 1, x/y is a convergent of \sqrt{D} .

If $n < 0$ then $x^2 - Dy^2 < 0 \implies x < y$ √ $\mathcal{D}^2 \leq 0 \Longrightarrow x < y$ $\forall D.$ Now look at y/x as an approximation to 1/ *D*:

 $\begin{array}{c} \hline \end{array}$ *y x* $-\frac{1}{2}$ *D* $\begin{array}{c} \hline \end{array}$ $=\frac{|n|}{\sqrt{2}}$ *x* $_′$ </sub> *D*(*y* $\frac{u_1}{u_1}$ *D* + *x*) $=\frac{|n|}{\sqrt{2\sqrt{2}+1}}$ *x* 2 √ *D*(*y* $\frac{|\mu|}{\sigma}$ *D*/*x* + 1) $\frac{1}{\sqrt{1-\frac{1}{2}}}\times\frac{1}{\sqrt{2}}$ *x* 2 (*y* √ *D*/*x* + 1) . Then red fraction is less than $\frac{1}{2x^2}$ since $x < y$ √ than $\frac{1}{2x^2}$ since $x < y \sqrt{D}$. It means that $\frac{y}{x}$ is a convergent to 1/ \sqrt{D} by Theorem 1. *If* $\sqrt{D} = [a_1, a_2, a_3, \ldots]$ then $a_1 \geq 1$ so $1/\sqrt{D} = [0, a_1, a_2, \ldots],$ which means the convergents to \sqrt{D} are the reciprocals of the which means the convergents to \sqrt{D} are the reciprocals of the which means the convergents to $\Delta V D$ are the reciprocals of the convergents to $1/\sqrt{D}$. Thus x/y is a convergent to \sqrt{D} .

If $n < 0$ then $x^2 - Dy^2 < 0 \implies x < y$ √ $\mathcal{D}^2 \leq 0 \Longrightarrow x < y$ $\forall D.$ Now look at y/x as an approximation to 1/ *D*:

 $\begin{array}{c} \hline \end{array}$ *y x* $-\frac{1}{2}$ *D* $\begin{array}{c} \hline \end{array}$ $=\frac{|n|}{\sqrt{2}}$ *x* $_′$ </sub> *D*(*y* $\frac{u_1}{u_1}$ *D* + *x*) $=\frac{|n|}{\sqrt{2\sqrt{2}+1}}$ *x* 2 √ *D*(*y* $\frac{|\mu|}{\sigma}$ *D*/*x* + 1) $\frac{1}{\sqrt{1-\frac{1}{2}}}\times\frac{1}{\sqrt{2}}$ *x* 2 (*y* √ *D*/*x* + 1) . Then red fraction is less than $\frac{1}{2x^2}$ since $x < y$ √ than $\frac{1}{2x^2}$ since $x < y \sqrt{D}$. It means that $\frac{y}{x}$ is a convergent to 1/ \sqrt{D} by Theorem 1. *If* $\sqrt{D} = [a_1, a_2, a_3, \ldots]$ then $a_1 \geq 1$ so $1/\sqrt{D} = [0, a_1, a_2, \ldots],$ which means the convergents to \sqrt{D} are the reciprocals of the which means the convergents to \sqrt{D} are the reciprocals of the which means the convergents to $\Delta V D$ are the reciprocals of the convergents to $1/\sqrt{D}$. Thus x/y is a convergent to \sqrt{D} .

Comments.

In some case of *D* and *n* there is no positive solution to the generalized Pell's equation at all!! (ex. *D* = 7 and *n* = −1) I don't know which conditions guarantee the existence of solutions of generalized Pell's equations likely Lagrange theorem. So, if you know, please let me know. \odot 18

[Implementation](#page-28-0)

Implementation

Example.

Find the positive solution with the least *x* to $x^2 - 7y^2 = 1$. Find the positive solution with the least x to $x^2 - 7y^2 =$
The continued fraction of $\sqrt{7} = [2, 1, 1, 1, 4, 1, 1, 1, 4, \ldots]$.

Recall that $p_{n+1} \geq p_n$ for each $n \geq 1$.

Implementation

Example.

Find the positive solution with the least *x* to $x^2 - 7y^2 = 1$. Find the positive solution with the least x to $x^2 - 7y^2 =$
The continued fraction of $\sqrt{7} = [2, 1, 1, 1, 4, 1, 1, 1, 4, \ldots]$.

Recall that $p_{n+1} \geq p_n$ for each $n \geq 1$.

Let's solve the **Problem 66** with SAGE !

[References](#page-31-0)

I

Project Euler @kr. URL:

http://euler.synap.co.kr/prob_detail.php?id=66.

James E Shockley. Introduction to number theory. Holt, Rinehart and Winston, 1967.

Joseph H Silverman.

A Friendly Introduction to Number Theory. Pearson, 2013.

Seung Hyun Yang. "Continued Fractions and Pell's 歸 Equation". In: University of Chicago REU Papers (2008).

