Pell's Equation

Semin Oh (오세민)

2016. 07. 07. The 80th Open Seminar on Algebras, Combinatorics and Algorithms

Pusan National University

Introduction

A **Diophantine equation** is an equation in which only integer solutions are allowed. A **Pell's equation** is a kind of Diophantine equations.

Definition. (Pell's Equation) $x^2 - Dy^2 = 1, \qquad D \in \mathbb{Z}_{>0}$

Problem

A SHORT HISTORY OF PELL'S EQUATION

Year	Events						
AD 628	Brahmagupta described how to use known solu-						
	tions to Pell's equation to create new solutions.						
AD 1150	Bhaskaracharya gave an efficient method for find-						
	ing a minimal positive solution to Pell's equation.						
AD 1657	Fermat solved the equation $x^2 - 61y^2 = 1$.						
	solution : (1766319049, 226153980)						
	Brouncker described a general method for solving						
	Pell's equation and solved $x^2 - 313y^2 = 1$						
	solution : (32188120829134849, 1819380158564160)						

A Short History

Brahmagupta (598-670)

A SHORT HISTORY OF PELL'S EQUATION

Year	Events						
AD 628	Brahmagupta described how to use known solu-						
	tions to Pell's equation to create new solutions.						
AD 1150	Bhaskaracharya gave an efficient method for find-						
	ing a minimal positive solution to Pell's equation.						
AD 1657	Fermat solved the equation $x^2 - 61y^2 = 1$.						
	solution : (1766319049, 226153980)						
	Brouncker described a general method for solving						
	Pell's equation and solved $x^2 - 313y^2 = 1$						
	solution : (32188120829134849, 1819380158564160)						

A Short History

Bhaskaracharya (1114-1185)

A SHORT HISTORY OF PELL'S EQUATION

Year	Events						
AD 628	Brahmagupta described how to use known solu-						
	tions to Pell's equation to create new solutions.						
AD 1150	Bhaskaracharya gave an efficient method for find-						
	ing a minimal positive solution to Pell's equation.						
AD 1657	Fermat solved the equation $x^2 - 61y^2 = 1$.						
	solution : (1766319049, 226153980)						
	Brouncker described a general method for solving						
	Pell's equation and solved $x^2 - 313y^2 = 1$						
	solution : (32188120829134849, 1819380158564160)						

A Short History

Pierre de Fermat (1601-1665)

William Bouncker (1585-1645)

BEHIND STORY..

John Wallis described Brouncker's method in a book on algebra and number theory, and Wallis and Fermat both asserted that Pell's equation always has a nontrivial solution.

Leonhard Euler mistakenly thought that the method in Wallis's book was due to **John Pell**, another English mathematician, and it is Euler who assigned the equation the name by which it has since been known.

A Short History

John Wallis (1616-1703)

BEHIND STORY..

John Wallis described Brouncker's method in a book on algebra and number theory, and Wallis and Fermat both asserted that Pell's equation always has a nontrivial solution.

Leonhard Euler mistakenly thought that the method in Wallis's book was due to **John Pell**, another English mathematician, and it is Euler who assigned the equation the name by which it has since been known.

A Short History

Loenhard Euler (1707-1783) John Pell (1611-1685)

Preliminaries

Theorem 0. (Lagrange 1768)

For every positive integer *D* that is not a square, the equation $x^2 - Dy^2 = 1$ has a nontrivial solution.

Remarks. If $D = m^2$ for some integer *m*, then there are only trivial solutions $(x, y) = (\pm 1, 0)$, since

$$x - my = -1 \qquad x - my = 1$$

$$x^{2} - m^{2}y^{2} = 1 \iff \& \qquad \text{or} \qquad \& \\ x + my = -1 \qquad x + my = 1$$

Note that if (x, y) is a solution, (-x, -y) and $(\mp x, \pm y)$ are also solutions. So it suffice to consider **only positive solutions**.

Theorem 0. (Lagrange 1768)

For every positive integer *D* that is not a square, the equation $x^2 - Dy^2 = 1$ has a nontrivial solution.

Remarks. If $D = m^2$ for some integer *m*, then there are only trivial solutions $(x, y) = (\pm 1, 0)$, since

$$x - my = -1 \qquad x - my = 1$$

$$x^{2} - m^{2}y^{2} = 1 \iff \qquad \& \qquad \text{or} \qquad \& \\ x + my = -1 \qquad x + my = 1$$

Note that if (x, y) is a solution, (-x, -y) and $(\mp x, \pm y)$ are also solutions. So it suffice to consider **only positive solutions**.

Now we assume that *D* is not a square number.

Continued Fraction

Definition. (Continued Fraction)

where $a_1 \in \mathbb{Z}$ and $a_i \in \mathbb{Z}_{>0}$ $(i \ge 2)$, is called a **(simple)** continued fraction. We will denote the above fraction by the symbol

 $[a_1, a_2, \ldots, a_n].$

Proposition.

For any $\alpha \in \mathbb{R}$, the expression of the continued fraction of α is uniquely determined.

Examples.

(a)
$$\frac{5}{7} = 0 + \frac{1}{1+2+2} = [0, 1, 2, 2]$$

(b) $-\frac{9}{7} = -2 + \frac{5}{7} = -2 + [0, 1, 2, 2] = [-2, 1, 2, 2]$
(c) $\sqrt{2} = 1 + \frac{1}{2+2+1} \cdots = [1, 2, 2, \ldots]$

Definition. (Convergent)

A continued fraction $[a_1, a_2, ..., a_m]$ by ignoring all of the terms after a given term is called a **convergent** to the original continued fractions. The *n***th convergent** is $[a_1, ..., a_n]$.

Definition. (Sequences of Convergents)

For a continued fraction $[a_1, a_2, ..., a_m]$ with $a_1 \in \mathbb{Z}_{\geq 0}$, define two sequences (p_n) and (q_n) consist of positive integers such that

$$\frac{p_n}{q_n} = [a_1, a_2, \dots, a_n]$$

and p_n , q_n are coprime for each $1 \le n \le m$.

Well Known Recurrence Relation:

$$p_{n+2} = a_{n+2}p_{n+1} + p_n \qquad q_{n+2} = a_{n+2}q_{n+1} + q_n$$

Example. ($\sqrt{7}$)

Let
$$\alpha_1 = \sqrt{7}$$
 and let $a_n = \lfloor \alpha_n \rfloor$, $\alpha_{n+1} = \frac{1}{\alpha_n - a_n}$

п	1	2	3	4	5	6	•••
α_n	$\sqrt{7}$	$\frac{1}{\sqrt{7}-2}$	$\frac{\sqrt{7}+1}{2}$	$\frac{\sqrt{7}+1}{3}$	$\sqrt{7} + 2$	$\frac{1}{\sqrt{7}-2}$	
a _n	2	1	1	1	4	1	•••
p_n	2	3	5	8	37	45	•••
q_n	1	1	2	3	14	17	

Solution to Pell's Equations

Theorem 1. (Dirichlet's Diophantine Approximation)

Let α be an irrational number. If a/b is a rational number with positive denominator such that

$$\left|\alpha - \frac{a}{b}\right| < \frac{1}{2b^2}$$

then a/b is one of the convergents to α .

See Chapter 33 in the Silverman's book¹.

¹Joseph H Silverman. <u>A Friendly Introduction to Number Theory</u>. Pearson, 2013.

Solution to Pell's Equation

Theorem 2.

Let *D* be a positive integer that is not a square. If x_0, y_0 is a positive solution to

$$x^2 - Dy^2 = 1$$

then x_0/y_0 is one of the convergents to \sqrt{D} .

<u>Proof</u> Since x_0, y_0 is a positive solution to $x^2 - Dy^2 = 1$, then $(x_0 - y_0 \sqrt{D})(x_0 + y_0 \sqrt{D}) = 1$ which implies that $x_0 > y_0 \sqrt{D}$. Therefore,

$$0 < \frac{x_0}{y_0} - \sqrt{D} = \frac{1}{y_0(x_0 + y_0\sqrt{D})} < \frac{1}{y_0(y_0\sqrt{D} + y_0\sqrt{D})} < \frac{\sqrt{D}}{2y_0^2\sqrt{D}}.$$

It follows from Theorem 1 that x_0/y_0 is a convergent to \sqrt{D} .

Solution to Generalized Pell's Equations

Theorem 3.

Let *n* be an integer and *D* a nonsquare positive integer with $|n| < \sqrt{D}$. If positive integers *x* and *y* satisfy $x^2 - Dy^2 = n$ then x/y is a convergent to the continued fraction of \sqrt{D} .

<u>Proof</u> Taking $\alpha = \sqrt{D}$, if $x^2 - Dy^2 = n$ with $|n| < \sqrt{D}$ and x, y > 0 then

$$\left|\frac{x}{y} - \sqrt{D}\right| = \frac{|n|}{y^2(x/y + \sqrt{D})} < \frac{\sqrt{D}}{y^2(x/y + \sqrt{D})} = \frac{1}{y^2(x/(y\sqrt{D}) + 1)}.$$

If $n > 0$ then $x^2 - Dy^2 = n > 0 \Longrightarrow x^2 > Dy^2$, so $x > y\sqrt{D}$ since x and y are positive. Then the blue fraction is less than $\frac{1}{2y^2}$. By
Theorem 1. x/y is a convergent of \sqrt{D} .

If n < 0 then $x^2 - Dy^2 < 0 \implies x < y \sqrt{D}$. Now look at y/x as an approximation to $1/\sqrt{D}$:

 $\left|\frac{y}{x} - \frac{1}{\sqrt{D}}\right| = \frac{|n|}{x\sqrt{D}(y\sqrt{D} + x)} = \frac{|n|}{x^2\sqrt{D}(y\sqrt{D}/x + 1)} < \frac{1}{x^2(y\sqrt{D}/x + 1)}.$ Then red fraction is less than $\frac{1}{2x^2}$ since $x < y\sqrt{D}$. It means that y/x is a convergent to $1/\sqrt{D}$ by Theorem 1. If $\sqrt{D} = [a_1, a_2, a_3, \ldots]$ then $a_1 \ge 1$ so $1/\sqrt{D} = [0, a_1, a_2, \ldots]$, which means the convergents to \sqrt{D} are the reciprocals of the convergents to $1/\sqrt{D}$. Thus x/y is a convergent to \sqrt{D} . If n < 0 then $x^2 - Dy^2 < 0 \implies x < y \sqrt{D}$. Now look at y/x as an approximation to $1/\sqrt{D}$:

 $\left|\frac{y}{x} - \frac{1}{\sqrt{D}}\right| = \frac{|n|}{x\sqrt{D}(y\sqrt{D} + x)} = \frac{|n|}{x^2\sqrt{D}(y\sqrt{D}/x + 1)} < \frac{1}{x^2(y\sqrt{D}/x + 1)}.$ Then red fraction is less than $\frac{1}{2x^2}$ since $x < y\sqrt{D}$. It means that y/x is a convergent to $1/\sqrt{D}$ by Theorem 1. If $\sqrt{D} = [a_1, a_2, a_3, \ldots]$ then $a_1 \ge 1$ so $1/\sqrt{D} = [0, a_1, a_2, \ldots]$, which means the convergents to \sqrt{D} are the reciprocals of the convergents to $1/\sqrt{D}$. Thus x/y is a convergent to \sqrt{D} .

Comments.

In some case of *D* and *n* there is no positive solution to the generalized Pell's equation at all!! (ex. D = 7 and n = -1) I don't know which conditions guarantee the existence of solutions of generalized Pell's equations likely Lagrange theorem. So, if you know, please let me know. \bigcirc

Implementation

Implementation

Example.

Find the positive solution with the least *x* to $x^2 - 7y^2 = 1$. The continued fraction of $\sqrt{7} = [2, 1, 1, 1, 4, 1, 1, 1, 4, ...]$.

п	1	2	3	4	5	•••
p_n	2	3	5	8	37	
q_n	1	1	2	3	14	•••
$p_n^2 - 7q_n^2$	-3	2	-3	1	-3	•••

Recall that $p_{n+1} \ge p_n$ for each $n \ge 1$.

Implementation

Example.

Find the positive solution with the least *x* to $x^2 - 7y^2 = 1$. The continued fraction of $\sqrt{7} = [2, 1, 1, 1, 4, 1, 1, 1, 4, ...]$.

п	1	2	3	4	5	•••
p_n	2	3	5	8	37	
q_n	1	1	2	3	14	•••
$p_n^2 - 7q_n^2$	-3	2	-3	1	-3	•••

Recall that $p_{n+1} \ge p_n$ for each $n \ge 1$.

Let's solve the Problem 66 with SAGE !

References

Π

Project Euler @kr. URL:

http://euler.synap.co.kr/prob_detail.php?id=66.

James E Shockley. <u>Introduction to number theory</u>. Holt, Rinehart and Winston, 1967.

Joseph H Silverman.

<u>A Friendly Introduction to Number Theory</u>. Pearson, 2013.

Seung Hyun Yang. "Continued Fractions and Pell's Equation". In: <u>University of Chicago REU Papers</u> (2008).

