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A graph is (d1, . . . , dr)-colorable if its vertex set can be partitioned into r sets
V1, . . . , Vr where the maximum degree of the graph induced by Vi is at most di
for each i ∈ {1, . . . r}. Given r and d1, . . . , dr, determining if a (sparse) graph is
(d1, . . . , dr)-colorable has attracted much interest. For example, the Four Color
Theorem states that all planar graphs are 4-colorable, and therefore (0, 0, 0, 0)-
colorable. The question is also well studied for partitioning planar graphs into three
parts. For two parts, it is known that for given d1 and d2, there exists a planar
graph that is not (d1, d2)-colorable. Therefore, it is natural to study the question
for planar graphs with girth conditions. Namely, given g and d1, determine the
minimum d2 = d2(g, d1) such that planar graphs with girth g are (d1, d2)-colorable.

We continue the study and ask the same question for graphs that are embeddable
on a fixed surface. Given integers k, γ, g we completely characterize the smallest
k-tuple (d1, . . . , dk) in lexicographical order such that each graph of girth at least
g ≤ 7 that is embeddable on a surface of Euler genus γ is (d1, . . . , dk)-colorable.
All of our results are tight, up to a constant multiplicative factor for the degrees di
depending on g. In particular, we show that a graph embeddable on a surface of
Euler genus γ is (0, 0, 0,K1(γ))-colorable and (2, 2,K2(γ))-colorable, where K1(γ)
and K2(γ) are linear functions in γ.
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