IMPROPER COLORINGS OF SPARSE GRAPHS ON SURFACES

ILKYOO CHOI

A graph is (d_1, \ldots, d_r) -colorable if its vertex set can be partitioned into r sets V_1, \ldots, V_r where the maximum degree of the graph induced by V_i is at most d_i for each $i \in \{1, \ldots, r\}$. Given r and d_1, \ldots, d_r , determining if a (sparse) graph is (d_1, \ldots, d_r) -colorable has attracted much interest. For example, the Four Color Theorem states that all planar graphs are 4-colorable, and therefore (0, 0, 0, 0)-colorable. The question is also well studied for partitioning planar graphs into three parts. For two parts, it is known that for given d_1 and d_2 , there exists a planar graph that is not (d_1, d_2) -colorable. Therefore, it is natural to study the question for planar graphs with girth conditions. Namely, given g and d_1 , determine the minimum $d_2 = d_2(g, d_1)$ such that planar graphs with girth g are (d_1, d_2) -colorable.

We continue the study and ask the same question for graphs that are embeddable on a fixed surface. Given integers k, γ, g we completely characterize the smallest k-tuple (d_1, \ldots, d_k) in lexicographical order such that each graph of girth at least $g \leq 7$ that is embeddable on a surface of Euler genus γ is (d_1, \ldots, d_k) -colorable. All of our results are tight, up to a constant multiplicative factor for the degrees d_i depending on g. In particular, we show that a graph embeddable on a surface of Euler genus γ is $(0, 0, 0, K_1(\gamma))$ -colorable and $(2, 2, K_2(\gamma))$ -colorable, where $K_1(\gamma)$ and $K_2(\gamma)$ are linear functions in γ .

This talk is based on results and discussions with H. Choi, F. Dross, L. Esperet, J. Jeong, M. Montassier, P. Ochem, A. Raspaud, and G. Suh.

E-mail address: ilkyoo@kaist.ac.kr

Date: May 16, 2016.